Answer:
180 m
Explanation:
The rock follows a free-fall motion - so the vertical distance covered can be found by using the equation

where
g = 10 m/s^2 is the acceleration due to gravity
t = 6.00 s is the time of the fall
Substituting these data, we find the height of the cliff:

Answer:
Number 3
Explanation:
Unlike other numbers, this states that wind is "renewable". The choice 2 sounds a bit selfish, or not worded properly, I believe choice 3 is the answer. However, you are the judge of choosing to believe this or not.
Good luck!
Answer:
86.6, 45°
Explanation:
The diagram explains better.
Using vector component method:
We find the x and y components of the vectors :
For the first:
A = -50cos(0)i + 50sin(0)j
A = -50i
For the second:
B = -50cos(60)i + 50sin(60)j
B = -25i + 43.3j
The resultant vector is :
R = A + B
R = -50i - 25i + 43.3j
R = -75i + 43.3j
The magnitude is:
R = [(-75)² + (43.3)²]^½
R = 86.6m
The angle is
tanθ = (50/50) = 1
θ = 45°
The tennis ball lands at a point 40.4 m from the base of the building.
The tennis ball is projected with a horizontal velocity <em>u</em> from a window, which is at a height <em>y</em> from the ground. The ball lands at a distance <em>x</em> from the base of the building. Let the ball take a time <em>t</em> to reach the ground. In the time <em>t</em> ,the ball falls a vertical distance <em>y</em> and also travel a horizontal distance <em>x</em>.
The initial vertical velocity of the ball is zero, since the ball is projected in the horizontal direction. The ball falls down under the action of gravitational force.
Thus, use the equation of motion,

rewrite the expression for <em>t</em> and calculate the value of <em>t</em> using 9.81 m/s²for <em>g</em> and 500 m for <em>y</em>.

The horizontal distance <em>x</em> is traveled using the constant velocity <em>u </em>since no force acts on the ball in the horizontal direction.
Therefore,

Substitute 4 m/s for <em>u</em> and 10.096 s for <em>t</em>

Thus, the ball lands at a point 40.4 m from the base of the building.
Work done is given by the change in kinetic energy of an object
- The kinetic energy of the shovel, the shrub, and in Robert's movement were changed, therefore, work is done in the given processes,
Reason:
Work is done when the total energy of object is affected by the application of force on the object over a distance
Therefore;
- In option <em>A</em>, pushing the shovel into ground (to dig out the dirt) the requires the application of a force (push) over a distance, (into and out of the ground) therefore work is done
- In option <em>B</em>, picking the shrub up gives it gravitational potential energy, therefore, work is done
- In option <em>C</em>, carrying the shrub to the hole does visible work
- In option <em>D</em>, holding the shrub while lowering it into the hole does work by preventing the shrub from falling randomly
Therefore, <u>work is done in the given processes</u>
Learn more about work-energy theorem here:
brainly.com/question/10063455