Answer:
In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.
You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.
Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.
hope it helps! stay safe and tell me if im wrong pls :D
(brainliest if you want, or if its right pls) :)
Answer:
d. zero
Explanation:
Constant velocity means the acceleration is zero. In this case the velocity does not change,
hope this helps you
have a good day :)
Question:
What two forces are balanced in what we call gravitational equilibrium?
A) the electromagnetic force and gravity
B) outward pressure and the strong force
C) outward pressure and inward gravity
D) the strong force and gravity
E) the strong force and kinetic energy
Answer:
The correct answer is C) Outward Pressure and Inward gravity
Explanation:
Gravitational equilibrium is a balance between the inward pull of gravity and the outward push of internal gas pressure. It also refers to the condition of a star in which the weight of overlying layers at each point is balanced by the total pressure at that point.
As the weight increases in the lower layers of the sun, the pressure also increases to maintain this balance. So you find that the outward push of pressure balances the inward pull of gravity thus creating an equilibrium.
Why is gravitational equilibrium important?
The simple answer is <u>balance. </u> If for instance the sun as a stable star (which has gravitational equilibrium) loses it's balance, it becomes highly unstable and prone to violent outbursts. These outbursts are caused by the very high radiation pressure at the star's upper layers, which blows significant portions of the matter at the "surface" into space during eruptions that may rage for several years. Of course such a condition is adverse to the existence and support of life.
Cheers!
Answer:
if the stars connect to a thing, then it describes.
It would take 500 seconds, because 2500 divided by 5 is 500