False noth all steroids are legal
Column A: x-axis, input, domain
Column B: y-axis, output, range
Those are other ways to describe them
hope i helped:)
Answer:
Ek1 = 900000 [J]
Ek1 = 400000 [J]
Explanation:
In order to solve this problem we must remember that kinetic energy is defined as the product of mass by velocity squared by a medium. Therefore using the following equation we have:

where:
m = mass = 500 [kg]
v1 = 60 [m/s]
So we have:
Ek1 = 0.5*500*(60^2)
Ek1 = 900000 [J]
and:
Ek2 = 0.5*500*(40^2)
Ek2 = 400000 [J]
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.

∴ 
∴ 
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4