1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
2 years ago
14

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the in

cline, how much work is done by that force?

Physics
1 answer:
wel2 years ago
3 0

The question is incomplete! The complete question along with answer and explanation is provided below.

Question:

A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.

What is the change in the potential energy (in Joules) of the mass as it goes up the incline?  

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?

Given Information:  

Mass = m = 0.5 kg

Horizontal distance = d = 40 cm = 0.4 m

Vertical distance = h = 7 cm = 0.07 m

Normal force = Fn = 1 N

Required Information:  

Potential energy = PE = ?

Work done = W = ?

Answer:

Potential energy = 0.343 Joules

Work done = 0.39 N.m

Explanation:

The potential energy is given by

PE = mgh

where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.

PE = 0.5*9.8*0.07

PE = 0.343 Joules

As you can see in the attached image

sinθ = opposite/hypotenuse

sinθ = 0.07/0.4

θ = sin⁻¹(0.07/0.4)

θ = 10.078°

The horizontal component of the normal force is given by

Fx = Fncos(θ)

Fx = 1*cos(10.078)

Fx = 0.984 N

Work done is given by

W = Fxd

where d is the horizontal distance

W = 0.984*0.4

W = 0.39 N.m

You might be interested in
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
A person lifts a 25 kg box of old sports equipment at an angle of 75 degrees to the vertical to a shelf 2.6 meters above. How mu
kogti [31]

Answer:

164.87 J

Explanation:

From the question,

Work done (W) = mghcosθ........................ Equation 1

Where m = mass of the box, h = height, g = acceleration due to gravity, θ = angle to the vertical

Given: m = 25 kg, h = 2.6 meters, θ = 75°.

Constant: g = 9.8 m/s²

Substitute these value into equation 1

W = 25×9.8×2.6×cos75°

W = 164.87 J.

6 0
2 years ago
The percentage of incident light radiation reflected back to space is termed albedo. True or false?
liubo4ka [24]

Answer:True

Explanation:

Albedo is a unit-less, non-dimensional quantity that shows how well a surface reflects solar energy. The value of albedo can vary from 0 to 1, 0 being the black and 1 refers to a white surface. Zero means Surface is a perfect absorber i.e. it absorbs all the incoming rays incidents on it. Albedo 1 means the surface is a perfect reflector.

Albedo usually applies for visible light, even though it may involve some of the infrared regions of the electromagnetic spectrum. The average albedo associated with earth surface is 30%

8 0
3 years ago
Suppose that the space shuttle Columbia accelerates at 14.0 m/s2 for 8.50 minutes after takeoff.
givi [52]

Answer:

A. speed = 7.14 Km/s

B. distance = 1820.7 Km

Explanation:

Given that: a = 14.0 m/s^{2}, t = 8.50 minutes.

But,

t = 8.50 = 8.50 x 60

  = 510 seconds

A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;

v = u + at

where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.

u = 0

So that,

v = 14 x 510

 = 7140 m/s

The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.

B. the distance traveled can be determined by applying second equation of motion.

s = ut + \frac{1}{2}at^{2}

where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.

u = 0

s = \frac{1}{2}at^{2}

  = \frac{1}{2} x 14 x (510)^{2}

 = 7 x 260100

 = 1820700 m

The distance that the shuttle has traveled during the given time is  1820.7 Km.

5 0
2 years ago
What is the magnitude of the applied electric field inside an aluminum wire of radius 1.2 mm that carries a 3.0-a current? [ σal
galben [10]
Hello

1) First of all, since we know the radius of the wire (r=1.2~mm=0.0012~m), we can calculate its cross-sectional area
A=\pi r^2 = 3.14 \cdot (0.0012~m)^2=4.5\cdot10^{-6}~m^2

2)  Then, we can calculate the current density J inside the wire. Since we know the current, I=3~A, and the area calculated at the previous step, we have
J= \frac{I}{A}= \frac{3~A}{4.5\cdot10^{-6}~m^2} = 6.63\cdot10^5 ~A/m^2

3) Finally, we can calculate the electric field E applied to the wire. Given the conductivity \sigma=3.6\cdot10^7~ \frac{A}{Vm} of the aluminium, the electric field is given by
E= \frac{J}{\sigma}= \frac{ 6.63\cdot10^5 ~A/m^2}{3.6\cdot10^7~ \frac{A}{Vm} } = 0.018~V/m

4 0
3 years ago
Other questions:
  • `i have a sealed cylinder sitting in my lab that contains 1,000.0 ml of gas. if i compress the cylinder and change the volume to
    10·1 answer
  • A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
    7·2 answers
  • How would you calculate power if work is not done?
    6·1 answer
  • ) In the calibration step of a thermochemistry experiment, a current of 117 mA, from a 24.0 V source was allowed to flow through
    11·1 answer
  • The magnitude of the momentum of an object is 64 kilogram meters per second. If the magnitude of te velocity is doubled, the mag
    11·1 answer
  • The energy of a photon is inversely proportional to the wavelength of the radiation. (T/F)
    12·1 answer
  • What is the mystery behind black hole​
    6·2 answers
  • A 52.0-kg sandbag falls off a rooftop that is 22.0 m above the ground. The collision between the sandbag and the ground lasts fo
    7·1 answer
  • A topographic map would best provide information about which area? O state boundaries O interstate highways O routes of minor ro
    9·2 answers
  • State the basic assumptions of the kinetic theory.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!