1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
14

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the in

cline, how much work is done by that force?

Physics
1 answer:
wel3 years ago
3 0

The question is incomplete! The complete question along with answer and explanation is provided below.

Question:

A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.

What is the change in the potential energy (in Joules) of the mass as it goes up the incline?  

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?

Given Information:  

Mass = m = 0.5 kg

Horizontal distance = d = 40 cm = 0.4 m

Vertical distance = h = 7 cm = 0.07 m

Normal force = Fn = 1 N

Required Information:  

Potential energy = PE = ?

Work done = W = ?

Answer:

Potential energy = 0.343 Joules

Work done = 0.39 N.m

Explanation:

The potential energy is given by

PE = mgh

where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.

PE = 0.5*9.8*0.07

PE = 0.343 Joules

As you can see in the attached image

sinθ = opposite/hypotenuse

sinθ = 0.07/0.4

θ = sin⁻¹(0.07/0.4)

θ = 10.078°

The horizontal component of the normal force is given by

Fx = Fncos(θ)

Fx = 1*cos(10.078)

Fx = 0.984 N

Work done is given by

W = Fxd

where d is the horizontal distance

W = 0.984*0.4

W = 0.39 N.m

You might be interested in
observe the figure given carefully volume of water in each vessel is shown arrange them in order of decreasing pressure at the b
mihalych1998 [28]

Answer:

See the explanation below

Explanation:

The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

 P=Ro*g*h

where:

Ro = density of the fluid [kg/m³]

g = gravity acceleration = 9.81 [m/s²]

h = elevation [m]

In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.

Therefore in order of decreasing will be  

The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.  

The pressure decreases as we go from the container B - D - A - C

5 0
3 years ago
A particle is confined to the x-axis between x = 0 and x = 1 nm. The potential energy U = 0 inside this region and U is infinite
DiKsa [7]

Answer:

Explanation:

According to heisenberg uncertainty Principle

Δx Δp ≥ h / 4π , where Δx  is uncertainty in position , Δp is uncertainty in momentum .

Given

Δx = 1 nm

Δp ≥ h /1nm x  4π

≥ 6.6 x 10⁻³⁴ / 10⁻⁹ x  4 π

≥  . 5254 x ⁻²⁵

h / λ ≥  . 5254 x ⁻²⁵

 6.6 x 10⁻³⁴ /. 5254 x ⁻²⁵ ≥ λ  

12.56 x 10⁻⁹ ≥ λ  

longest wave length = 12.56 n m

6 0
3 years ago
A constant force of 8.0 N is exerted for 4.0 s on a 16-kg object initially at rest. The change in speed of this object will be:
AfilCa [17]

The change in speed of this object is 3m/s

According to Newton's second law;

F = ma

F = mv/t

Given the following parameters

Force F = 8.0N

mass m = 16kg

time t = 4.0s

Required

speed v

Substitute the given parameters into the formula

v = Ft/m

v = 8 * 6/16

v = 48/16

v = 3m/s

Hence the change in speed of this object is 3m/s

Learn more here: brainly.com/question/19072061

8 0
3 years ago
slader How much energy is required to move a 1040 kg object from the Earth's surface to an altitude four times the Earth's radiu
andrew-mc [135]

Answer:

ΔU = 5.21 × 10^(10) J

Explanation:

We are given;

Mass of object; m = 1040 kg

To solve this, we will use the formula for potential energy which is;

U = -GMm/r

But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.

Thus;

ΔU = -GMm((1/r_f) - (1/r_i))

Where;

M is mass of earth = 5.98 × 10^(24) kg

r_f is final radius

r_i is initial radius

G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Since, it's moving to altitude four times the Earth's radius, it means that;

r_i = R_e

r_f = R_e + 4R_e = 5R_e

Where R_e is radius of earth = 6371 × 10³ m

Thus;

ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)

× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))

ΔU = 5.21 × 10^(10) J

7 0
3 years ago
How long does it take a message to travel from earth to a spacecraft at mars at its farthest from earth (about 400 million km)?
seraphim [82]
<span>A message needs to be traveled to mars from earth. Distance between Earth and Mars (given) s = 400 million km
 Speed of light = 3.00—10^5 km/ sec
 We know Velocity = distance / time => time = distance / velocity
 Time taken t = 400 million km / 3.00—10^5 = 400 x 10^6 / 3 x 10^5 = 1333.3 sec Time taken t = 22 min</span>
5 0
3 years ago
Other questions:
  • Hydrogen/hydronium ion concentration
    12·1 answer
  • In a sinusoidally driven series RLC circuit, the inductive resistance is XL = 100 Ω, the capacitive reactance is XC = 200 Ω, and
    15·1 answer
  • Consider the aquatic phosphorus cycle. On land most phosphorus is found in rocks and minerals. In the oceans, phosphorus is depo
    14·2 answers
  • How much potential energy does a 20-kg barrel have when it is in the truck whose floor is 5.0 m above the ground? P.E. = J
    7·1 answer
  • A diver who weighs 500 N steps off a diving board that is 10 m above the water. The diver hits the water with kinetic energy of
    12·1 answer
  • Two cars are traveling at the same speed of 27 m/s on a curve thathas a radius of 120 m. Car A has a mass of 1100 kg and car B h
    8·1 answer
  • Kinetic friction is affected by the weight of the object. TrueFalse
    7·2 answers
  • An oscillator consists of a block attached to a spring (k = 427 N/m). At some time t, the position (measured from the system's e
    15·1 answer
  • Ac soucre change it polarity how many time
    15·1 answer
  • Select the correct answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!