Answer:
3 * 10³J/s
Explanation:
Given :
Force applied, F = 300 N
Distance, d = 30 m
Time, t = 3 seconds
Power, P = Workdone / time
Recall :
Workdone = Force * distance
Workdone = 300 N * 30 m = 9000 Nm
Workdone = 9 * 10³ J
Power = (9 * 10³ J) / 3s
Power = 3 * 10³J/s
Answer:
a) The velocity of rock at 1 second, v = 9.8 m/s
b) The velocity of rock at 3 second, v = 29.4 m/s
c) The velocity of rock at 5.5 second, v = 53.9 m/s
Explanation:
Given data,
The rock is dropped from a bridge.
The initial velocity of the rock, u = 0
a) The velocity of rock at 1 second,
Using the first equation of motion
v = u + gt
v = 0 + 9.8 x 1
v = 9.8 m/s
b) The velocity of rock at 3 second,
v = u + gt
v = 0 + 9.8 x 3
v = 29.4 m/s
c) The velocity of rock at 5.5 second,
v = u + gt
v = 0 + 9.8 x 5.5
v = 53.9 m/s
V = IR
I = current
R = resistance
Voltage = 100 * (3.44x 10^-4) = do the calculation
Hope this helps
Yes u can help I need to see th worksheet to help tho
Answer:

Explanation:
The angular momentum of an object is given by:

where
m is the mass of the object
v is its velocity
r is the distance of the object from axis of rotation
Here we have:
m = 350 g = 0.35 kg is the mass of the ball
v = 9.0 m/s is the velocity
r = 3.0 m is the distance of the object from axis of rotation (if we take the ground as the centre of rotation)
Therefore, the angular momentum is:
