Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
The most crucial information would be its atomic number.
In the part of the spectrum our eyes can detect (a spectrum is an arry of entities, as light waves or particles, ordered in accordance with the magnitudes of a common physical property, as wavelength or mass) Hope this helps you :D
Answer:
The average induced emf around the border of the circular region is
.
Explanation:
Given that,
Radius of circular region, r = 1.5 mm
Initial magnetic field, B = 0
Final magnetic field, B' = 1.5 T
The magnetic field is pointing upward when viewed from above, perpendicular to the circular plane in a time of 125 ms. We need to find the average induced emf around the border of the circular region. It is given by the rate of change of magnetic flux as :

So, the average induced emf around the border of the circular region is
.
<span>An automobile with a mass of 1450 kg is parked on a moving flatbed railcar; the flatbed is 1.5 m above the ground. The railcar has a mass of 38,500 kg and is moving to the right at a constant speed of 8.7 m/s on a frictionless rail...
</span>