Answer:
c. the tilt of the axis of rotation with respect to the Plane of the Ecliptic
Explanation:
The inclination of the ecliptic (or known only as obliqueness) refers to the angle of the axis of rotation with respect to a perpendicular to the plane of the eclipse. He is responsible for the seasons of the year that the planet Earth lends. It is not constant but changes through the movement of nutation. The terrestrial plane of Ecuador and the ecliptic intersect in a line that has an end at the point of Aries and at the diametrically opposite point of Libra.
When the Sun crosses the Aries, the spring equation occurs (between March 20 and 21, the beginning of spring in the northern hemisphere and the early autumn of the southern hemisphere), and from which the Sun is in the North Hemisphere; Pound until you reach the point of the autumn equinox (around September 22-23, beginning fall in the northern hemisphere and spring in the southern hemisphere).
Carbon Dioxide (CO2), this leads to a greenhouse effect.
Approximately 15 m/s is the speed of the car.
<u>Explanation:</u>
<u>Given:</u>
speed of sound - 343 m/s
You detect a frequency that is 0.959 times as small as the frequency emitted by the car when it is stationary. So, it can be written as,


If there is relative movement between an observer and source, the frequency heard by an observer differs from the actual frequency of the source. This changed frequency is called the apparent frequency. This variation in frequency of sound wave due to motion is called the Doppler shift (Doppler effect). In general,

Where,
- Observed frequency
f – Actual frequency
v – Velocity of sound waves
– Velocity of observer
- velocity of source
When source moves away from an observer at rest (
), the equation would be



By substituting the known values, we get






Approximately 15 m/s is the speed of the car.
The Answer Is D Because When Uu Magnify Large Items The Image Is Reflected Back To The Magnifying Glass Which Makes The Image Appear In The Back