Answer:
there will be less precipitation because there is less water vapour
Explanation:
<span>A Learner’s license is available to those at least 15 years old that have passed the written and vision tests.
</span><span>An intermediate license, you must be 16 or 17 years old and you must have held a learner’s license for at least 12 months without receiving any traffic violations.</span>
Because the specific metals aren’t mentioned in this inquiry.
The educational guesses that we can propose is that:
<span><span>1. </span>The
hypothetical inquiry: There are existing metals for making pots that will cook
food much faster.</span>
<span><span>2. </span>The
one-tailed alternative hypothesis: There are other metals for making pots that
will cook food much faster than the other metals.</span>
<span><span>
3. </span>The
one-tailed null hypothesis: All metals that are used in making pots will cook
food at an equal rate.</span>
An object undergoing <span>uniform circular motion </span>is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction. So I'm thinking velocity
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>