I think the answer would be T<span>ransverse, Longitudinal, & Surface waves.
</span>
Answer:
C.
Explanation:
Visual constancy is a key mechanism that allows the perception to remain.the same even as images change
#<em><u>CARRYONLEARNING</u></em>
Answer:
Explanation:
Force between two charges of q₁ and q₂ at distance d is given by the expression
F = k q₁ q₂ / d₂
Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm
k = 1/ 4π x 8.85 x 10⁻¹²
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 35969.4 x 10⁻³ N .
force between charge q₂ = 34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 82729.6 x 10⁻³ N
Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)
Total force = 118699 x 10⁻³
= 118.7 N.
A form of energy might take more energy to harness than it provides because of dissipated energy. During the transformation process, not all of the energy will be converted to useful energy. Some of the energy are dissipated in the form of heat. Renewable resources are resources that are replenished at a faster rate than they are used. They become non-renewable when these resources are used up at a faster rate than they are replenished. We don't use renewable resources for everything that we use energy for because the energy transformation might be inefficient or requires a lot of capital and maintenance.
Answer:
t₁ > t₂
Explanation:
A coin is dropped in a lift. It takes time t₁ to reach the floor when lift is stationary. It takes time t₂ when lift is moving up with constant acceleration. Then t₁ > t₂, t₁ = t₂, t₁ >> t₂ , t₂ > t₁
Solution:
Newton's law of motion is given by:
s = ut + (1/2)gt²;
where s is the the distance covered, u is initial velocity, g is the acceleration due to gravity and t is the time taken.
u = 0 m/s, t₁ is the time to reach ground when the light is stationary and t₂ is the time to reach ground when the lift is moving with a constant acceleration a.
hence:
When stationary:

Hence t₂ < t₁, this means that t₁ > t₂.