a) 32.3 N
The force of gravity (also called weight) on an object is given by
W = mg
where
m is the mass of the object
g is the acceleration of gravity
For the ball in the problem,
m = 3.3 kg
g = 9.8 m/s^2
Substituting, we find the force of gravity on the ball:

b) 48.3 N
The force applied

The ball is kicked with this force, so we can assume that the kick is horizontal.
This means that the applied force and the weight are perpendicular to each other. Therefore, we can find the net force by using Pythagorean's theorem:

And substituting
W = 32.3 N
Fapp = 36 N
We find

c) 
The ball's acceleration can be found by using Newton's second law, which states that
F = ma
where
F is the net force on an object
m is its mass
a is its acceleration
For the ball in this problem,
m = 3.3 kg
F = 48.3 N
Solving the equation for a, we find

Answer:
C)
Explanation:
The buoyancy and weight of the wood have to be equal for the system to be in equilibrium. The total mass (then, weight) of the wood is the same, so the total buoyancy has to be the same. Since buoyancy is the weight of the liquid displaced, the volume of liquid displaced will be the same in either case, which means that the water level will remain unchanged.
Answer:
The correct option is B
Explanation:
Although, it is common knowledge that in an electric field, unlike charges attract and like charges repel. However, to build up an electric potential, a positive charge is brought close to another positive charge - this causes work done to be changed to electric potential energy and stored in the electric field.
It should however be noted that when a negative charge is moved away from a positive charge, the negative charge gains electric potential energy.
Answer:
true for first and false for second
Explanation:
Mantle convection<span> is the slow creeping motion of Earth's solid silicate </span>mantle<span> caused by </span>convection<span> currents carrying heat from the interior of the Earth to the surface.
</span>