Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

The answer is A. Newton's third law of motion states that for every action, there is an equal and opposite reaction. A rocket exerts a large force on the gas that is in the rocket chamber (action). The gas thus exerts a large reaction force forward on the rocket (reaction). The large reaction force is called thrust.
Answer:
the tension is 18513N
Explanation:
Given that
mass = 1683kg
acceleration = 1.2m/s^2
acceleration due to gravity = 9.8m/s^2
T-mg = ma
T = ma + mg
T = m(a +g)
T = 1683 kg(1.20 m/s2 + 9.8)
T = 1683 (11)
T = 18513N
therefore, the tension is 18513N