Answer:
109.09°C
Explanation:
Given that:
the capacity of the cooling car system = 5.6 gal
volume of solute = volume of the water; since a 50/50 blend of engine coolant and water (by volume) is used.
∴ 
Afterwards, the mass of the solute and the mass of the water can be determined as shown below:
mass of solute = 


On the other hand; the mass of water = 


Molarity = 
= 
= 17.757 m
≅ 17.76 m
∴ the boiling point of the solution is calculated using the boiling‑point elevation constant for water and the Molarity.

where,
= 0.512 °C/m
= 100°C + 17.56 × 0.512
= 109.09 °C
Answer:
Kp = 1.41 x 10⁻⁶
Explanation:
We have the chemical equation:
2 A(g) + 3 B(g)⇌ C(g)
In which A and B are the reactants and C is the product. We calculate first the change in the number of moles of gas (Δn or dn):
dn= (sum moles products - sum moles reactants)
= (moles C - (moles A + moles B))
= (1 - (2+3))
= 1 - 5
= -4
We have also the following data:
Kc = 63.2
T= 81∘C + 273 = 354 K
R = 0.082 L.atm/K.mol (it is a constant)
Thus, we introduce the data in the mathematical expression for the relation between Kp and Kc:
= (0.082 L.atm/K.mol x 354 K)⁻⁴ = 1.41 x 10⁻⁶
Jupiter's atmosphere is composed predominantly of hydrogen and helium, but if you have to select any one option then we can look at the percentage of existence of these elements that would be
<span>90 percent hydrogen.
remaining 10 percent is helium
so choose Hydrogen.</span>