Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-

Answer:
kinetic energy than the potential energy it carries
Explanation:
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

Answer:
Many emerging diseases arise when infectious agents in animals are passed to humans (referred to as zoonoses). As the human population expands in number and into new geographical regions, the possibility that humans will come into close contact with animal species that are potential hosts of an infectious agent increases.
Explanation:
The balanced neutralization reaction here is:
Ca(OH)2 + 2HBr --> 2H2O + CaBr2
Notice that two moles of Her are required to neutralize every one mole of Ca(OH)2. This means that for however many moles of Her reacted, HALF as many moles of Ca(OH)2 reacted as well.
Moles of HBr reacted = 0.75 M x 0.345 L = 0.259 mol
Moles of Ca(OH)2 reacted = 0.259 mol / 2 = 0.130 mol
Concentration of Ca(OH)2 = 0.130 mol / 0.250 L = 0.52 M