Answer:
2,4-dinitrophenylhydrazine (Brady’s reagent)
Explanation:
The mass of cobalt (III) needed is
m = 5.2 L (0.42 mol/L) ( 93 g/mol)
m = 97.65 g
The volume of nitric acid needed is
V = 5.2 L (0.42 mol/L) (3 mol / 1 mol) (1000 mL/1.6 mol)
V = 1968.75 mL
The moles of water produced is
n = 5.2 L (0.42 mol/L) (3 mol / 1 mol)
n = 3.15 moles
NaCl would form because it’s a single replacement reaction
Answer:
Explanation:
To solve this problem, we need to obtain the number of moles of the solute we desired to prepare;
Number of moles = molarity x volume
Parameters given;
volume of solution = 500mL = 0.5L
molarity of solution = 0.5M
Number of moles = 0.5 x 0.5 = 0.25moles
Now to know the volume stock to take;
Volume of stock =
molarity of stock = 4M
volume =
= 0.0625L or 62.5mL
Answer:
Ethane would have a higher boiling point.
Explanation:
In this case, for the lewis structures, we have to keep in mind that all atoms must have <u>8 electrons</u> (except hydrogen). Additionally, each carbon would have <u>4 valence electrons</u>, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.
Now, the main difference between methane and ethane is an <u>additional carbon</u>. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have <u>more area of interaction</u> for ethane. If we have more area of interaction we have to give <u>more energy</u> to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.
I hope it helps!