Answer:
bouyant force - the upward force on an object in a fluid
boiling point - the temperature at which a liquid becomes a gas
solubility - the ability of a substance to dissolve in another
conductivity- the ability to transfer heat or electricity
density - the amount of mass in a given volume
Answer:
Explanation:
mass of backpack, m = 8.1 kg
weight of climber, W = 656 N
height raised, h = 9.4 m
time, t = 28.2 min = 28.2 x 60 = 1692 second
weight of backpack, w = m x g = 8.1 x 9.8 = 79.38 N
Work done by the climber on the backpack = mg x h = 79.38 x 9.4 = 746.17 J
Wok done in lifting herself + backpack = (W + w) x h
= (656 + 79.38) x 9.4 = 6912.57 J
Power developed by the climber,P = Total work / time
P = 6912.57 / 1692 = 4.09 W
The charges are the same in absolute value, so the change of potential energy is the same. That means that the change in kinetic energy is also the same. Then:
1 = Ke/Kp = m_e *v_e^2 / m_p * v_p^2, or
v_e/v_p = sqrt( m_p/m_e),
So the speed of the electron will be sqrt( m_p/m_e) times greater than the speed of the proton
My answers would be as follows:
<span>You step on the scale and notice that you have lost five pounds. Which of the following has changed?
B) Only your weight changed since mass is conserved. It cannot be destroyed or created.
How could you increase the mass of a wooden block?
D) None of the above. Mass cannot be created so the mass will stay the same it will only be the weight you can increase depending on the acceleration.
If you went to the moon, how would your mass change relative to your mass on Earth?
A) It would be the same on the moon as on Earth. Mass will be the same. It is weight that will change since the gravitational acceleration in the moon is different as that to the earth.
</span>