<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>
Complete Question
The complete question is shown on the first uploaded image
Answer:
The workdone is 
Explanation:
From the question we are told that
The initial Volume is 
The final volume is 
The external pressure is
Generally the change in volume is

Substituting values we have


Generally workdone is mathematically represented as

W is negative because the working is done on the environment by the system which is indicated by volume increase
Substituting values


Now 
Therefore 

Answer:
Air resistance
Answer B is correct
Explanation:
The friction that occurs when air pushes against a moving object causing it to negatively accelerate is called as air resistance.
hope this helps
brainliest appreciated
good luck! have a nice day!
If there was any way to do that, then your teacher wouldn't
need to keep you coming into class every day and doing
homework every night. She could just give you the 3 or 4
paragraphs and a few pictures that you're asking me for,
and bada-bing ! you'd know it !
The time it takes, and the amount of homework it takes, is
EXACTLY the time you spent hearing about it in class.
(Unless you're some kind of genius savant prodigy, which
you're not and I'm not.)
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:
