Answer:
Polarized glasses contains a special filter that block dangerous intensity of lights which are reflected by flat surfaces and they help in reducing glare and discomfort
Explanation:
Sunlight scatters in all the direction. But when this light strikes with the flat surfaces, then the light which is reflected by the flat surface tend to become polarized, means the reflected light will travel in all directions. This reflecting light creates a dangerous intense light that causes glare and reduces visibility.
Polarized glasses contains a special filter that block this type of dangerous intensity lights, help in reducing glare and discomfort.
Therefore, by the above discussion it can be say that the polarized sunglasses particularly effective in reducing glares.
Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:

<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:


c) The time can be found using the following equation:


d) The flight time is given by:

I hope it helps you!
Answer:
0.045 J
Explanation:
The work done on a charge moving through a potential difference is given by

where
W is the work done
q is the charge
is the potential difference
In this problem, we have
q = 0.0050 C is the charge
is the potential difference
Using the formula, we find the work done:

Answer:
The velocity of the one thrown up will be the same as the second one
Explanation:
They will fall and hit the ground at the same time although they have the same velocity because object one although has double height it has initial velocity of zero
In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2