Yes the answer is a , kinetic energy
Answer:
Yes.
The nuclear equation {226/88 Ra → 222/26 Rn + 4/2 He} is balanced. As we know that an alpha particle is identical to a helium atom. This implies that if an alpha particle is eliminated from an atom's nucleus, an atomic number of 2 and a mass number of 4 is lost.
Therefore, the equation will be reduced to:
226 - 4 = 222
88 - 2 = 86
Hence, the equation is balanced.
Explanation:
I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
1) 1.8 micrograms(least)
2) 1.8 grams
3) 1.8 kilograms(greatest)
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100