1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
9

When a voltage difference is applied to a piece of metal wire, a 5.0 mA current flows through it. If this metal wire is now repl

aced with a silver wire having twice the diameter of the original wire, how much current will flow through the silver wire? The lengths of both wires are the same, and the voltage difference remains unchanged. (The resistivity of the original metal is 1.68 � 10-8 ? ? m, and the resistivity of silver is 1.59 � 10-8 ? ? m.)
Answer
5.3 mA
11 mA
19 mA
21 mA
Physics
1 answer:
zheka24 [161]3 years ago
5 0

Answer:

I = 21.13 mA ≈ 21 mA

Explanation:

If

I₁ = 5 mA

L₁ = L₂ = L

V₁ = V₂ = V

ρ₁ = 1.68*10⁻⁸ Ohm-m

ρ₂ = 1.59*10⁻⁸ Ohm-m

D₁ = D

D₂ = 2D

S₁ = 0.25*π*D²

S₂ = 0.25*π*(2*D)² = π*D²

If we apply the equation

R = ρ*L / S

where (using Ohm's Law):

R = V / I

we have

V / I = ρ*L / S

If V and L are the same

V / L =  ρ*I / S

then

(V / L)₁ = (V / L)₂  ⇒     ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂

If

S₁ = 0.25*π*D²   and

S₂ = 0.25*π*(2*D)² = π*D²

we have

ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)

⇒    I₂ = 4*ρ₁*I₁ / ρ₂

⇒     I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m

⇒     I₂ = 21.13 mA

You might be interested in
Jake calculates that the frequency of a wave is 500 hertz and that the wave is moving at 1,250 m/s. What is the wavelength of th
Neko [114]
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters

v =  \lambda \times f
1250 =  \lambda \times 500 \\ \lambda = 1250 \div 500 \\ \lambda = 2.5 \: meters
6 0
3 years ago
In which way are the cathode rays deflected in the x-plates of the Cathode Ray Oscilloscope​
MrRissso [65]

Answer:

The cathode ray is deflected vertically to the fluorescent screen

Explanation:

.

4 0
2 years ago
Read 2 more answers
What is the centripetal force that would be required to keep a 4.0 kg mass moving in a horizontal circle with a radius of 0.80 m
KIM [24]

Answer:

D. 1.8 × 102 newtons radially inward

Explanation:

The magnitude of the centripetal force is given by:

F=m\frac{v^2}{r}

where

m is the mass of the object

v is the tangential speed

r is the radius of the circular trajector

In this problem, we have m = 4.0 kg, v = 6.0 m/s and r = 0.80 m, therefore substituting into the equation we get

F=(4.0 kg)\frac{(6.0 m/s)^2}{0.80 m}=180 N

The centripetal force is the force that keeps the object in a circular trajectory, so it is a force that is always directed inward (towards the centre of the circular path) and radially. Therefore, the correct answer is

D. 1.8 × 102 newtons radially inward

4 0
3 years ago
Read 2 more answers
Two balloons (m = 0.012 kg) are separated by a distance of d = 15 m. They are released from rest and observed to have an instant
Evgesh-ka [11]

Answer:

1.492*10^14 electrons

Explanation:

Since we know the mass of each balloon and the acceleration, let’s use the following equation to determine the total force of attraction for each balloon.

F = m * a = 0.012 * 1.9 = 0.0228 N

Gravitational forces are negligible

Charge force = 9 * 10^9 * q * q ÷ 225

= 9 * 10^9 * q^2 ÷ 225 = 0.0228

q^2 = 5.13 ÷ 9 * 10^9

q = 2.387 *10^-5

This is approximately 2.387 *10^-5 coulomb of charge. The charge of one electron is 1.6 * 10^-19 C

To determine the number of electrons, divide the charge by this number.

N =2.387 *10^-5  ÷ 1.6 * 10^-19 = 1.492*10^14 electrons

3 0
3 years ago
A 28 kg mass suspends from a light rope 18 m long & is held to one side by the horizontal force, F, as shown below.
frutty [35]

Answer: 215.15 N

Explanation:

If we draw a free body diagram of the mass we will have the following:

\sum{F_{x}}=-Tcos\theta + F=0 (1)

\sum{F_{y}}=Tsin\theta - mg=0 (2)

Where T is the tension force of the rope, m=28 kg the mass, g=9.8 m/s^{2} the acceleration due gravity and mg is the weight.

On the other hand, we can calculate \theta as follows:

cos\theta=\frac{s}{l}

\theta=cos^{-1}(\frac{s}{l})

Where s=11.1 m and l=18 m

\theta=cos^{-1}(\frac{11.1 m}{18 m})

\theta=51.9\° (3)

Now, we firstly need to find T from (2):

T=\frac{mg}{sin\theta} (4)

T=\frac{(28 kg)(9.8 m/s^{2})}{sin(51.9\°)}

T=348.69 N (5)

Substituting (5) in (1):

F=Tcos\theta (6)

F=348.69 N cos(51.9\°)

Finally:

F=215.15 N

8 0
3 years ago
Other questions:
  • Find the change in kinetic energy of a 0.650 kg fish leaping to the right at 15.0 m/s that collides inelastically with a 0.950 k
    8·2 answers
  • Sam, whose mass is 75 kg , takes off across level snow on his jet-powered skis. The skis have a thrust of 160 N and a coefficien
    7·1 answer
  • A good baseball pitcher can throw a baseball toward home plate at 87 mi/h with a spin of 1710 rev/min. How many revolutions does
    9·1 answer
  • A deuteron (a nucleus that consists of one proton and one neutron) is accelerated through a 4.01 kV potential difference. How mu
    5·1 answer
  • Two blocks with different mass are attached to either end of a light rope that passes over a light, frictionless pulley that is
    14·1 answer
  • Two objects were lifted by a machine. One object had a mass of 5000 kg, and was lifted at a speed of 2 m/sec. The other had a ma
    11·1 answer
  • A TV satellite dish is designed to receive radio waves of wavelength
    5·1 answer
  • Following through when hitting a baseball
    7·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
  • 13. Describe the molecules of a solid in terms of kinetic energy.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!