You need to know the specific heat capacity of air.
Then energy needed = 0.005 x sp.heat.cap x 10
Choice 'b' is one possible way to state
Newton's second law of motion.
The other choices are meaningless.
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
<span>the statement that is true regarding flexibility is : b. a joint's range of motion will be lost if the joint is not used regularly.
Our body is like a machine. If we not constantly heat it up, our body will be more prone to injury. We can see that the old people who lived within the tribe in the middle of the mountain are far stronger than the one who lived in the city.</span>