Answer:
4. It is the force of the road on the tires (an external force) that stops the car.
Explanation:
If there is no friction between the road and the tires, the car won't stop.
You can see this, for example, when there is ice on the road. You can still apply the brakes (internal force), but since there is no friction (external force) the car won't stop.
The force of the brakes on the wheels is not what makes the car stop, it is the friction of the road against still tires that makes it stop.
Answer:
No the given statement is not necessarily true.
Explanation:
We know that the kinetic energy of a particle of mass 'm' moving with velocity 'v' is given by

Similarly the momentum is given by 
For 2 particles with masses
and moving with velocities
respectively the respective kinetic energies is given by


Similarly For 2 particles with masses
and moving with velocities
respectively the respective momenta are given by


Now since it is given that the two kinetic energies are equal thus we have

Thus we infer that the moumenta are not equal since the ratio on right of 'i' is not 1 , and can be 1 only if the velocities of the 2 particles are equal which becomes a special case and not a general case.
The answer is 1.33 i hope this helps you