Answer:
the force acting on the team mate is 1.19 kN.
Explanation:
given,
mass = 196 lbm
while tackling, the deceleration is from velocity 6.7 m/s to 0 m/s
time taken for deceleration = 0.5 sec
F = mass × acceleration
acceleration =
= -13.4 m/s²
1 lbs = 0.453 kg
196 lbs = 196 × 0.453 = 88.79 kg
F = 88.79 × 13.4
F = 1189.786 N = 1.19 kN
hence, the force acting on the team mate is 1.19 kN.
Here is how I would I explain it. Water is channeled through tunnels in the dam. The energy of water flowing through the dam’s tunnels cause turbines to turn. The turbines make generators move. Generators are machines that produce electricity. Engineers control the amount of water let through the dam. The process used to control this flow of water is called the intake system.
Hope this helps can’t do the diagram part.
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Answer:
Explanation:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:
where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find
The answer is A , the forces are balanced