At 100 km/hr, the car's kinetic energy is
KE = (1/2) (mass) (speed)²
KE = (1/2) (1575 kg) ( [100 km/hr] x [1000 m/km] x [1 hr/3600 sec] )²
KE = (787.5 kg) (27.78 m/s)²
KE = 607,639 Joules
In order to deliver this energy in 2.9 seconds, the engine must supply
(607,639 J / 2.9 sec) = 209,531 watts
<em>Power = 281 HP</em>
Myopia
Explanation:
myopia is a common vision condition in which you can see objects near to you clearly, but objects farther away are blurry. It occurs when the shape of your eye causes light rays to refract incorrectly, focusing images in front of your retina instead of on your retina. It can be corrected corrected with eyeglasses, contact lenses or refractive surgery.
all the allials must be aligned in the same direction
magnets are affected by heat, drops, and improper storage
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.