1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
2 years ago
13

A runner traveling with an initial velocity of 1.1 m/s accelerates at a constant rate of 0.8 m/s2fora time of 2.0 s.(a).What is

his velocity at the end of this time
Physics
1 answer:
pychu [463]2 years ago
7 0

Answer:

The final velocity of the runner at the end of the given time is 2.7 m/s.

Explanation:

Given;

initial velocity of the runner, u = 1.1 m/s

constant acceleration, a = 0.8 m/s²

time of motion, t = 2.0 s

The velocity of the runner at the end of the given time is calculate as;

v = u + at

where;

v is the final velocity of the runner at the end of the given time;

v = 1.1 + (0.8)(2)

v = 2.7 m/s

Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.

You might be interested in
2. An athlete of average size is hanging from the end of a 20 m long rope, which has a mass of 4 kg and is attached to a hook in
a_sh-v [17]

Answer:

  t = 0.319 s

Explanation:

With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by

             v = √T/λ

Linear density is

           λ = m / L

           λ = 4/20

           λ = 0.2 kg / m

The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg

           T = W = mg

           T = 80 9.8

           T = 784 N

The pulse rate is

          v = √(784 / 0.2)

          v = 62.6 m / s

The time it takes to reach the hook can be searched with kinematics

          v = x / t

          t = x / v

          t = 20 / 62.6

          t = 0.319 s

7 0
3 years ago
What type of image results when the object is located between 2f (2 focal lengths) and f (the focal point) of a convex lens?
VikaD [51]

Answer:

C

Explanation:

the image formed is real but inverted and magnified

you can remember it by R I M

hope this helps

4 0
3 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
The current through a heater is 12 A when it is plugged into a
jasenka [17]

Answer:

A. 10Ω

Explanation:

7 0
3 years ago
As the launch force increase the launch velocity will
FrozenT [24]

Answer:

As the launch force increase the launch velocity will

<em><u>Increase</u></em>

The reason for your answer to number six is because

<em><u>There is a direct relationship between force and acceleration.</u></em>

<em><u /></em>

Explanation:

<em>It is known all over the place that, there is a direct relationship between Force and acceleration of an object leading to an increase in force being directly proportional to the increase in the acceleration of the given object and vice versa.</em>

5 0
3 years ago
Other questions:
  • Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side
    8·1 answer
  • _______ was the first person to propose the idea of moving continents as a scientific hypothesis.
    6·2 answers
  • Will each of the following actions increase the distance between the diffraction spots? a) Increase the distance between the scr
    8·1 answer
  • How the forces makes effect on the state of motion of an object ? <br><br> Plz ans fast urgent
    14·1 answer
  • The position of a particle is given by the function x=(5t3−8t2+12)m, where t is in s. at what time does the particle reach its m
    12·2 answers
  • Canada geese migrate essentially along a north–south direction for well over a thousand kilo-meters in some cases, traveling at
    9·1 answer
  • If scientists could create a sheet of glass with a refractive index so high that it took light months or years to travel through
    7·1 answer
  • Which option correctly shows the concentration of H3O+ ions in pure water?
    14·1 answer
  • A woman drives a 45 gram golf ball off of a tee and gives the ball a velocity of 28 m/s to the right. What is the change in mome
    9·1 answer
  • Size relationships between parts of a whole are known as.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!