1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
3 years ago
6

4. An aluminum alloy fin of 12 mm thick, 10 mm width and 50 mm long protrudes from a wall, which is maintained at 120C. The amb

ient air temperature is 22C. The heat transfer coefficient and conductivity of the fin material are 140 W/m2K and 55 W/mk respectively. Determine a. Temperature at the end of the fin b. Temperature at the middle of the fin. c. Calculate the heat dissipation energy of the fin
Engineering
1 answer:
Minchanka [31]3 years ago
7 0

Answer:

a) 84.034°C

b) 92.56°C

c) ≈ 88 watts

Explanation:

Thickness of aluminum alloy fin = 12 mm

width = 10 mm

length = 50 mm

Ambient air temperature = 22°C

Temperature of aluminum alloy is maintained at 120°C

<u>a) Determine temperature at end of fin</u>

m = √ hp/Ka

   = √( 140*2 ) / ( 12 * 10^-3 * 55 )

   = √ 280 / 0.66 = 20.60

Attached below is the remaining answers

You might be interested in
A piston–cylinder device containing carbon dioxide gas undergoes an isobaric process from 15 psia and 80°F to 170°F. Determine t
drek231 [11]

Answer:

See explanation

Explanation:

Given:

Initial pressure,

p

1

=

15

psia

Initial temperature,

T

1

=

80

∘

F

Final temperature,

T

2

=

200

∘

F

Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.

R

=

0.04513

Btu/lbm.R

C

v

=

0.158

Btu/lbm.R

Find the work done during the isobaric process.

w

1

−

2

=

p

(

v

2

−

v

1

)

=

R

(

T

2

−

T

1

)

=

0.04513

(

200

−

80

)

w

1

−

2

=

5.4156

Btu/lbm

Find the change in internal energy during process.

Δ

u

1

−

2

=

C

v

(

T

2

−

T

1

)

=

0.158

(

200

−

80

)

=

18.96

Btu/lbm

Find the heat transfer during the process using the first law of thermodynamics.

q

1

−

2

=

w

1

−

2

+

Δ

u

1

−

2

=

5.4156

+

18.96

q

1

−

2

=

24.38

Btu/lbm

7 0
3 years ago
In your Reader/Writer Notebook, write a short first-person narrative from the perspective of the bank clerk, describing her phys
guajiro [1.7K]
BAHHHHAHHH HOFHOFYOCIGC
5 0
3 years ago
A bridge to be fabricated of steel girders is designed to be 500 m long and 12 m wide at ambient temperature (assumed 20°C). Exp
Volgvan

Answer:

a) 22.5number

b) 22.22 m length

Explanation:

Given data:

Bridge length = 500 m

width of bridge = 12 m

Maximum temperature = 40 degree C

minimum temperature  = - 35 degree C

Maximum expansion can be determined as

\Delta L = L \alpha (T_{max} - T_{min})

where , \alpha is expansion coefficient = 12\times 10^{-6} degree C

SO, \Delta L = 500\times 12\times 10^{-6}\times ( 40 - (-35))

\Delta L = 0.45 m = 450 mm

number of minimum expansion joints is calculated as

n = \frac{450}{20} = 22.5

b) length of each bridge

Length = \frac{500}{22.5} = 22.22 m

8 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Assoli18 [71]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}  

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

8 0
4 years ago
Rubber bushings are used on suspensions to
Harlamova29_29 [7]
D. All of the above
4 0
3 years ago
Other questions:
  • Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, s
    12·1 answer
  • What can happen to you if you are in a crash and not wearing a seat belt?<br> Explain.
    13·2 answers
  • What is the difference between CNC and NC​
    15·1 answer
  • If 65 gallons of hydraulic oil weighs 350lb, what is the specific weight of the oil in lb/ft^3?
    14·1 answer
  • A hollow, spherical shell with mass 2.00kg rolls without slipping down a slope angled at 38.0?.
    15·1 answer
  • Who else hates this because i do
    12·2 answers
  • 1. What's the maximum overall length of the part?<br> 2. What material is used to fabricate the part
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B7x%7D%20%5C%2C%20dx" id="TexFormula1" title="\int\limits^a_b {7x} \
    8·1 answer
  • Coving is a curved edge between a floor and a wall.<br> O True<br> O False
    13·2 answers
  • What is included in the environmental impact assessment process, such as the use of geographic information systems?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!