Isotopes are basically from the same element. In terms of subatomic particles of the element, the isotopes will then basically have the same number of protons. The electrons also have to be same in number given that the elements are in neutral charges.
We are then left with neutrons, which is one of the subatomic particles residing in the nucleus of an atom.
Thus, the answer is NEUTRONS.
<span>Erosion is the act in which the earth is broken down by water, ice, or wind. It breaks bits of earth (rock or dirt) to form hills and mountains.
</span>
Answer:
The temperature must be changed to 4 times of the initial temperature so as to keep the pressure and the volume the same.
Explanation:
Pressure in the container is P and volume is V.
Temperature of the helium gas molecules =
Molecules helium gas = x
Moles of helium has = 
PV = nRT (Ideal gas equation)
...[1]
After removal of helium gas only a fourth of the gas molecules remains and pressure in the container and volume should remain same.
Molecules of helium left after removal = 
Moles of helium has left after removal = 
...[2]




The temperature must be changed to 4 times of the initial temperature so as to keep the pressure and the volume the same.
The volume becomes two. You have to use the equation P1 x V1 = P2 x V2
P is pressure and V is volume.
P1 = 50 P2 = 125
V1 = 5 V2 = v (we don't know what it is)
Then set up the equation:
50 times 5 = 125 times v
250 = 125v
the divide both sides by 125 and isolate v
2 = v
Therefore the volume is decreased to 2.
Also, Boyle's Law explains this too: Volume and pressure are inversely related, This means that when one goes up the other goes down (ie when pressure increases volume decreases and vice versa). Becuase the pressure went up from 50 KPa tp 125 KPa the volume had to decrease.
Answer:
B. 0.2.
Explanation:
<em>n = mass/molar mass</em>
mass of CaCO₃ = 20 g, molar mass of CaCO₃ = 100.0869 g/mol.
<em>∴ n = mass/molar mass = </em>(20 g)/(100.0869 g/mol) <em>= 0.1998 ≅ 0.2 mol.</em>
<em></em>
<em>So, the right choice is: B. 0.2.</em>