Answer: The given statement is true.
Explanation:
When we increase the amount of solvent which is water in this case then it means there will occur an increase in the molecules. Hence, there will be more number of collisions to take place with increase in number of molecules.
Therefore, more is the amount of interaction taking place between the molecules of a solution more will be its rate of hydrolysis.
Thus, we can conclude that the statement increasing the amount of water in which the sugar is dissolved will increase the frequency of collisions between the sucrose molecules and the water molecules resulting in an increase in the rate of hydrolysis, is true.
The best name for the compound is DINITROGEN TRIOXIDE.
Each chemical compound is always represented by a chemical symbol, which shows the ratio at which each atom of the elements of the compound are combine together and this is often used in naming the compound. Looking at the compound given in the question, the compound is made up of two atoms of nitrogen and three atoms of oxygen and this fact was used in naming the compound. In naming chemical compounds, 'Di' stands for 2 while 'Tri' stands for 3. Since there are two nitrogen and three oxygen atoms in the compound, that was why it was named dinitrogen trioxide.
Answer:
a. 5.36x10⁻⁴ g/mL
b. 4.29x10⁻⁵ g/mL
Explanation:
As the units for concentration are not specified, I'll respond using g/mL.
a. We <em>divide the sample mass by the final volume</em> in order to <u>calculate the concentration</u>:
- 0.268 g / 500 mL = 5.36x10⁻⁴ g/mL
b. We can use C₁V₁=C₂V₂ for this question:
- 8.00 mL * 5.36x10⁻⁴ g/mL = C₂ * 100.00 mL
<u>Given:</u>
Mass of calcium nitrate (Ca(NO3)2) = 96.1 g
<u>To determine:</u>
Theoretical yield of calcium phosphate, Ca3(PO4)2
<u>Explanation:</u>
Balanced Chemical reaction-
3Ca(NO3)2 + 2Na3PO4 → 6NaNO3 + Ca3(PO4)2
Based on the reaction stoichiometry:
3 moles of Ca(NO3)2 produces 1 mole of Ca3(PO4)2
Now,
Given mass of Ca(NO3)2 = 96.1 g
Molar mass of Ca(NO3)2 = 164 g/mol
# moles of ca(NO3)2 = 96.1/164 = 0.5859 moles
Therefore, # moles of Ca3(PO4)2 produced = 0.0589 * 1/3 = 0.0196 moles
Molar mass of Ca3(PO4)2 = 310 g/mol
Mass of Ca3(PO4)2 produced = 0.0196 * 310 = 6.076 g
Ans: Theoretical yield of Ca3(PO4)2 = 6.08 g