Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
The average velocity is -4.17 m/s
Explanation:
The average velocity of a body is given by:

where
d is the displacement of the body
t is the time elapsed
For the student in this problem, we have:
Initial position: 
Final position: 
So the displacement is

The time elapsed is
t = 60 s
Therefore, the average velocity is

Where the negative sign means the student is moving towards the origin.
Learn more about average speed and velocity:
brainly.com/question/8893949
brainly.com/question/5063905
#LearnwithBrainly
Answer:
6.45×10¯²⁶ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 97.3 MHz
Energy (E) =?
Next, we shall convert 97.3 MHz to Hz. This can be obtained as follow:
1 MHz = 1×10⁶ Hz
Therefore,
97.3 MHz = 97.3 MHz × 1×10⁶ Hz / 1 MHz
97.3 MHz = 9.73×10⁷ Hz
Thus, 97.3 MHz is equivalent to 9.73×10⁷ Hz.
Finally, we shall determine the energy at which the frequency is broadcasting. This can be obtained as follow:
Frequency (f) = 9.73×10⁷ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 9.73×10⁷
E = 6.45×10¯²⁶ J
Therefore, the energy at which the frequency is broadcasting is 6.45×10¯²⁶ J
It's D. By "net" they mean the overall force the object experiences, so sum all the force vectors, those in a negative direction (eg friction) should be subtracted.
Using the "v = f. λ" <span>equation...
Your "v" or </span>velocity = 156.25 meters/second