Missing figure: find it in attachment.
Answer:
Force D
Explanation:
In order to answer the question, let's keep in mind that the force of gravity on an object on Earth is the attractive force exerted by the Earth on the object; its direction is always downward (towards the Earth's centre), and its magnitude is given by
F = mg
where m is the mass of the object and g is the acceleration of gravity.
It follows immediately that in the figure, the force of gravity is the only force acting downward: therefore, force D.
The other forces are called:
Force A: thrust (it is the forward force generated by the engines)
Force B: lift (it is the upward produced by the aerodynamics of the wings)
Force C: air resistance (it is the backward force due to the friction between the air and the surface of the plane)
Answer:
I would say d sry if im wrong
Explanation:
Answer:
I = 0.09[amp] or 90 [milliamps]
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is equal to the product of the voltage by the current.
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
Now, we replace the values of the first current into the equation
V = 180*10^-3 * R
V = 0.18*R (1)
Then we have that the resistance is doubled so we have this new equation:
V = I*(2R) (2)
The voltage remains constant therefore 1 and 2 are equals and we can obtain the current value.
V = V
0.18*R = I*2*R
I = 0.09[amp] or 90 [milliamps]
Answer:
True
Explanation:
In 2019 was taken the first image of a supermassive black hole in the center of the galaxy M87 with the Event Horizon Telescope, which is a network of radio telescope located in different points of the Earth, with the purpose of making a telescope of the size of the Earth.
A radio telescope is an antenna that is capable to perceive the light in the radio part of the electromagnetic spectrum¹.
It is important to notice that in the picture what it can be seen is the effect that the black hole has in the nearby stars.
Key terms:
¹Electromagnetic spectrum: decomposition of light in its different wavelengths (from radio waves to gamma rays).