Stephen`s Law:
P = (Sigma) · A · e · T^4
P in = P out
e = 1 for blacktop;
1150 W = (Sigma) · T^4
(Sigma) = 5.669 · 10 ^(-8) W/m²K^4
T^4 = 1150 : ( 5.669 · 10^(-8) )
T^4 = 202.875 · 10^8
![T = \sqrt[4]{202.857 * 10 ^{8} }](https://tex.z-dn.net/?f=T%20%3D%20%20%5Csqrt%5B4%5D%7B202.857%20%2A%2010%20%5E%7B8%7D%20%7D%20)
T = 3.774 · 10² =
377.4 KAnswer: Equilibrium temperature is 377.4 K.
Answer:
Option B. 2.8 s
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 27 m/s
Angle of projection (θ) = 30
Acceleration due to gravity (g) = 9.8 m/s²
Time of flight (T) =?
The time of flight of the ball can be obtained as follow:
T = 2uSineθ / g
T = 2 × 27 × Sine 30 / 9.8
T = 2 × 27 × 0.5 / 9.8
T = 27 / 9.8
T = 2.8 s
Therefore, time of flight of the ball is 2.8 s
'a', 'b', and 'c' are all reasonable statements.
Hold on lemme get the link for you