Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
consider east-west direction along X-axis and north-south direction along Y-axis
= velocity of migrating robin relative to air = 12 j m/s
(where "j" is unit vector in Y-direction)
= velocity of air relative to ground = 6.3 i m/s
(where "i" is unit vector in X-direction)
= velocity of migrating robin relative to ground = ?
using the equation
=
+ 
= 12 j + 6.3 i
= 6.3 i + 12 j
magnitude : sqrt((6.3)² + (12)²) = 13.6 m/s
direction : tan⁻¹(12/6.3) = 62.3 deg north of east
Answer:
The answer is C because they have to be close to be able to interact
Explanation:
SUPONIENDO QUE LA ACELERACIÓN DE LA GRAVEDAD ES 
USANDO LA SEGUNDA LEY DE NEWTON:
<em>m</em> = 80.0 N/
= 8.16 kg
Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21