If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !
Answer:
92.25m
Explanation:
In order to solve the exercise, it is necessary to apply the concept of construtive interference due to a path difference.
The formula is given by,

where,
n is the index of refraction of the medium in which the wave is traveling
wavelenght
is the path difference
m = integer (0,1,2,3...)
Since in this case we are dealing with an atmospheric environment, where air is predominant, we approximate n to 1.
And since we need the reflected wave,

Where x is the distance in one direction without return.
The distance must correspond to the minimum therefore m = 0, so



Then the minimum distance is:



Therefore the minimum distance from the mountain to the receiver that produces destructive interference at the receiver is 92.25m
Dog whistle ..................
Answer:
All the observers are correct.
Explanation:
This is simply a problem of reference frames from which the motion of the book is being viewed by the various observers.
From their various reference frames, they are all correct.
Observer A must be in the inertial reference frame.
<em>Observers who can explain the behavior of the book and the car by using the relationship between the sum of the forces and changing velocity are said to be observers in inertial reference frames.</em>
This is clearly shown by what observer A noticed. There was a relative motion between the book and the car as she pointed out, making her to be in an inertial reference frame.
<em>Similarly, observers in inertial reference frames can also explain the changes in velocity of objects by considering the forces exerted on them by other objects.</em>
This is shown by observer B as he is able to notice how the force of the car affects the velocity of the book.
Observer C is actually in a non-inertial reference frame, as newtons law of force motion relationship are no longer observed. This occurs in the non inertial reference frame.