By applying the knowledge of similar triangles, the lengths of AE and AB are:
a. 
b. 
<em>See the image in the attachment for the referred diagram.</em>
<em />
- The two triangles, triangle AEC and triangle BDC are similar triangles.
- Therefore, the ratio of the corresponding sides of triangles AEC and BDC will be the same.
<em>This implies that</em>:
<em><u>Given:</u></em>

<u>a. </u><u>Find the length of </u><u>AE</u><u>:</u>
EC/DC = AE/DB



<u>b. </u><u>Find the length of </u><u>AB:</u>

AC = 6.15 cm
To find BC, use AC/BC = EC/DC.




Therefore, by applying the knowledge of similar triangles, the lengths of AE and AB are:
a. 
b. 
Learn more here:
brainly.com/question/14327552
Answer:
wrong
Step-by-step explanation:
Pretty sure the answer would be 16.
Because 7.6 rounds to 8 and 1.4 would round up to 2. Then you multiply 8 & 2 and get 16.
Answer:
Hi there!
I might be able to help you!
It is NOT a function.
<u>Determining whether a relation is a function on a graph is relatively easy by using the vertical line test. If a vertical line crosses the relation on the graph only once in all locations, the relation is a function. However, if a vertical line crosses the relation more than once, the relation is not a function</u>. <u>X = y2 would be a sideways parabola and therefore not a function.</u> Good test for function: Vertical Line test. If a vertical line passes through two points on the graph of a relation, it is <em>not </em>a function. A relation which is not a function. The x-intercept of a function is calculated by substituting the value of f(x) as zero. Similarly, the y-intercept of a function is calculated by substituting the value of x as zero. The slope of a linear function is calculated by rearranging the equation to its general form, f(x) = mx + c; where m is the slope.
A relation that is not a function
As we can see duplication in X-values with different y-values, then this relation is not a function.
A relation that is a function
As every value of X is different and is associated with only one value of y, this relation is a function.
Step-by-step explanation:
It's up there!
God bless you!