Answer:
Magnetic field is in south west direction .
Explanation:
Let us represent various direction by i , j, k . i representing east , j representing north and k representing vertically upward direction .
magnetic field is represented vectorially as follows
B = B₀ ( - i - j )
In the first case velocity of electron
v = v k
Force = q ( v x B )
= -e [ vk x B₀ ( - i - j ) ]
= evB₀ ( j -i )
Direction of force is north -west .
In the second case velocity of electron
v = vj
Force = -e [ vj x B₀ ( - i - j ) ]
= - evB₀ k
force is downward
In the third case, velocity of electron
v = v( -j +i )
Force = -e [ v( -j +i ) x B₀ ( - i - j ) ]
= 2 evB₀ k
Force is upward.
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
If you are working with electricity most people will measure it in watts.
So, A. watts is your best answer.
Hope I helped! ^w^
Answer:
λ = 470.66 nm
Explanation:
for bright fringe
D= distance between slit and screen
d= distance between the slits
for first order bright fringe m = 1,


for dark fringe,we have
Now to get the dark fringes at the same location we should have;
(706)D/d = (m + 1/2)λD/d
put m = 1
(1 + 1/2)λ = (706)
λ = 470.66 nm
Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.