Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.
Explanation:
Given that,
Mass of the rock climber, m = 90 kg
Original length of the rock, L = 16 m
Diameter of the rope, d = 7.8 mm
Stretched length of the rope, 
(a) The change in length per unit original length is called strain. So,

(b) The force acting per unit area is called stress.

(c) The ratio of stress to the strain is called Young's modulus. So,

Hence, this is the required solution.
Answer:
Rocks and pebbles that hit Earth's atmosphere and burn up are ______. ... an object in motion stays in motion unless acted upon by another force ... Kepler's Laws of Motion explain why ______. ... planets closer to the sun travel faster in their orbits than planets that are far away ... comets have long tails ... objects can move.
Explanation:
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m
Answer:what are the options..?
Explanation: