A person standing on the moon watching the earth rotate
Ans: a = 2.50 m/s^2
Explanation:
First convert the mass in its standard unit i.e. kilogram(kg):
2250 lbs = 1020.583kg
Next use Newton's Second law:
F = ma
Where F = 2552N
m = 1020.583kg
=> a = (2552/1020.583)
a = 2.50 m/s^2
For this, you need the v-squared equation, which is v(final)² = v(initial)² + 2aΔx
The averate acceleration is thus a = (v(final)² - v(initial)²) / 2Δx = (20² - 15²) / 2(50) = 175 / 100 = 1.75 m/s²
So the average acceleration is 1.75 m/s²
Work needed = 23,520 J
<h3>
Further explanation
</h3>
Given
height = 12 m
mass = 200 kg
Required
work needed by the crane
Solution
Work is the transfer of energy caused by the force acting on a moving object
Work is the product of force with the displacement of objects.
Can be formulated
W = F x d
W = Work, J, Nm
F = Force, N
d = distance, m
F = m x g
Input the value :
W = mgd
W = 200 kg x 9.8 m/s²x12 m
W = 23520 J
To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>