1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
3 years ago
5

A planet in elliptical orbit around a star moves from the point in its orbit furthest from the star (A) to the closest point (P)

. Choose the planet to be your system. The work done by the force of gravity during this movement is:
Physics
1 answer:
Virty [35]3 years ago
6 0

Answer:

Zero work done,since the body isn't acting against  or by gravity.

Explanation:

Gravitational force is usually  considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.

Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.

The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.

You might be interested in
A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
valkas [14]
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
8 0
3 years ago
A wheel starts from rest and has an angular acceleration that is given by α (t) = (6.0 rad/s4)t2. After it has turned through 10
marissa [1.9K]

Answer:

75 rad/s

Explanation:

The angular acceleration is the time rate of change of angular velocity. It is given by the formula:

α(t) = d/dt[ω(t)]

Hence: ω(t) = ∫a(t) dt

Also, angular velocity is the time rate of change of displacement. It is given by:

ω(t) = d/dt[θ(t)]

θ(t) = ∫w(t) dt

θ(t) = ∫∫α(t) dtdt

Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:

θ(t) = ∫∫α(t) dtdt

θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt

θ(t) = ∫[2t³]dt = t⁴/2 rad

θ(t) = t⁴/2 rad

At θ(t) = 10 rev = (10 *  2π) rad = 20π rad, we can find t:

20π = t⁴/2

40π = t⁴

t = ⁴√40π

t = 3.348 s

ω(t) = ∫α(t) dt = ∫6t² dt = 2t³

ω(t) = 2t³

ω(3.348) = 2(3.348)³ = 75 rad/s

7 0
3 years ago
Compute the torque about the origin of the gravitational force F--mgj acting on a particle of mass m located at 7-xî+ yj and sho
Andrews [41]

Answer:

Explanation:

Force, F = - mg j

r = - 7x i + y j

Torque is defined as the product f force and the perpendicular distance.

It is also defined as the cross product of force vector and the displacement vector.

\overrightarrow{\tau }=\overrightarrow{r}\times \overrightarrow{F}

\overrightarrow{\tau }=(- 7 x i + yj)\times (-mgj)

[tex]\overrightarrow{\tau  }= 7 m g x k

Here, we observe that the torque is independent of y coordinate.

3 0
3 years ago
A car is moving at 25.5 m/s when it accelerates at 1.94 m/s^2 for 2.3 s. What is the car's final speed? (Keep in mind direction
Stolb23 [73]

Answer:

29.96m/s

Explanation:

Given parameters:

Initial speed  = 25.5m/s

Acceleration  = 1.94m/s²

Time  = 2.3s

Unknown:

Final speed of the car  = ?

Solution:

To solve this problem, we are going to apply the right motion equation:

    v = u  + at

v is the final speed

u is the initial speed

a is the acceleration

t is the time taken

 Now insert the parameters and solve;

      v  = 25.5 + (1.94 x 2.3)  = 29.96m/s

3 0
2 years ago
A chair exerts a force of 20 N on a floor and is not moving. What force does
AysviL [449]

The floor exerts 20 N of force on the chair

Explanation:

We can answer this question by using Newton's third law, which states that:

<em>"When an object A exerts a force (called action) on an object B, object B exerts an equal and opposite force (called reaction) on object A"</em>

In this problem, we can identify:

- Object A as the chair

- Object B as the floor

This means that the force of 20 N exerted by the chair on the floor is the action, and so the force exerted by the floor on the chair is the reaction. Newton's third law states that these two forces are equal and opposite: therefore, the force exerted by the floor on the chair is also 20 N, but in the opposite direction.

Learn more about Newton's third law:

brainly.com/question/11411375

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • What is the best definition of muscular strength
    14·1 answer
  • Data: Atom Element Protons Neutrons Electrons Net Charge Mass Number 1 2 3 4
    11·1 answer
  • A student is investigating the best method for heating marshmallows using an open flame.
    11·1 answer
  • Air that enters the pleural space during inspiration but is unable to exit during expiration creates a condition called a. open
    6·1 answer
  • Gizmo Warm-up: Lifting a piano A pulley is a simple machine that is used to lift heavy objects. A pulley is a wheel with a groov
    10·1 answer
  • When light travels through a small hole, it appears to an observer that the light spreads out, blurring the outline of the hole.
    12·1 answer
  • The ,______provides rigidity and protection to the plant cell​
    14·1 answer
  • Two forces act on a 1250 kg sailboat as it moves through the water with an initial velocity of 11 m/s. The forward force of the
    15·1 answer
  • I wanna cry<br> I literally made this account like a year ago and my username still applies
    7·2 answers
  • I NEED HELP ASAP!!!!!!!!!!! Draw a circuit with a switch, and 5 light bulbs. 3 of the bulbs must be in a series and be operated
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!