Answer:
The formation of a rainbow is more a demonstration of the wave-like behavior of light.
Explanation:
A rainbow is caused by the interaction of sunlight with atmospheric conditions. A rainbow formation results from the refraction and reflection of light due to changes in the light's wavelength direction. Naturally, light enters a water droplet, slowing down and bending as it goes from air to denser water in a refraction as if "bent." Then light reflects off the inside of the droplet, separating into its component wavelengths or colors. With light exiting from the droplet, a rainbow is formed.
Answer:
The number of bright fringes per unit width on the screen is,
Explanation:
If d is the separation between slits, D is the distance between the slit and the screen and
is the wavelength of the light. Let x is the number of bright fringes per unit width on the screen is given by :

is the wavelength
n is the order
If n = 1,

So, the the number of bright fringes per unit width on the screen is
. Hence, the correct option is (B).
Answer:
The wavelength of these signals is as follow:
- Wavelength of 550 kHz is 545.45 m
- Wavelength of 1600 kHz is 187.5 m
Explanation:
Given that:
Frequency = 550 kHz & 1600 kHz
Velocity = 3.0 x 10⁸ m/s
As we know that frequency is expressed by the following equation:
- Frequency = Velocity / Wavelength ---- (1)
For 550 kHz:
The equation can be rearranged as
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (550 x 1000 Hz)
Wavelength = 545.45 m
For 1600 kHz:
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (1600 x 1000 Hz)
Wavelength = 187.5 m