1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
3 years ago
13

How many grams of coffee must evaporate from 350 g of coffee in a 100-g glass cup to cool the coffee from 95.0ºC to 45.0ºC? You

may assume the coffee has the same thermal properties as water and that the average heat of vaporization is 2340 kJ/kg (560 cal/g). (You may neglect the change in mass of the coffee as it cools, which will give you an answer that is slightly larger tha
Physics
1 answer:
bagirrra123 [75]3 years ago
7 0

Answer:

33 gm.

Explanation:

Heat required by coffee in evaporation = m L = m x 560 cals

Heat released by coffee in cooling = m c Δ T = 350 X 1 X 50 = 17500 cals

Heat released by glass cup = 100 x .2 x 50 = 1000 cals ( specific heat of glass is .2 cals per gram per k)

Total heat released = 18500 cals

Heat gained = heat lost

m x 560 = 18500

m = 33 gm.

You might be interested in
A law enforcement officer in an intergalactic "police car" turns on a red flashing light and sees it generate a flash every 1.2
butalik [34]

Answer:

The velocity of the police car relative to earth is v_{rel} = 2.51\times 10^{8} m/s

Given:

time for flash generation of the inter galactic police car, t = 1.2 s

time between flashes as measured from earth, t' = 2.2 s

Solution:

Utilising Einstein's equation for time dilation to calculate the velocity of the police car, the equation is given by:

t' = \frac{t}{\sqrt {1 - \frac{v^{2}}{c^{2}}}}                                (1)

where, c = speed of light in vacuum = c = 3\times 10^{8}

re arranging eqn (1) for velocity, v:

v_{rel} = c\times \sqrt {1 - (\frac{t}{t'})^{2}}                               (2)

Now, from eqn (2)

v_{rel} = 3\times 10^{8}( \sqrt {1 - (\frac{1.2}{2.2})^{2}})

v_{rel} = 3\times 10^{8}\times 0.838

v_{rel} = 2.51\times 10^{8} m/s

3 0
3 years ago
If you exert a force of 10.0 N to lift a box a distance of 0.75 m, how much work do you do?
Bas_tet [7]

Answer:

<h2>7.5 J</h2>

Explanation:

The work done by an object can be found by using the formula

workdone = force × distance

From the question we have

workdone = 10 × 0.75

We have the final answer as

<h3>7.5 J</h3>

Hope this helps you

7 0
3 years ago
What is the geologic time scale and how is it used​
olganol [36]

Answer:

It is a type of map used to map out the geographical change over time. I believe

Explanation:

6 0
3 years ago
A 13.5 μF capacitor is connected to a power supply that keeps a constant potential difference of 22.0 V across the plates. A pie
-BARSIC- [3]

a) 3.27\cdot 10^{-3} J

b) 11.60\cdot 10^{-3} J

c) 8.33\cdot 10^{-3} J

Explanation:

a)

The energy stored in a capacitor is given by

U=\frac{1}{2}CV^2

where

C is the capacitance of the capacitor

V is the potential difference across the plates of the capacitor

For the capacitor in this problem, before insering the dielectric, we have:

C=13.5 \mu F = 13.5\cdot 10^{-6}F is its capacitance

V = 22.0 V is the potential difference across it

Therefore, the initial energy stored in the capacitor is:

U=\frac{1}{2}(13.5\cdot 10^{-6})(22.0)^2=3.27\cdot 10^{-3} J

b)

After the dielectric is inserted into the plates, the capacitance of the capacitor changes according to:

C'=kC

where

k = 3.55 is the dielectric constant of the material

C is the initial capacitance of the capacitor

Therefore, the energy stored now in the capacitor is:

U'=\frac{1}{2}C'V^2=\frac{1}{2}kCV^2

where:

C=13.5\cdot 10^{-6}F is the initial capacitance

V = 22.0 V is the potential difference across the plate

Substituting, we find:

U'=\frac{1}{2}(3.55)(13.5\cdot 10^{-6})(22.0)^2=11.60\cdot 10^{-3} J

C)

The initial energy stored in the capacitor, before the dielectric is inserted, is

U=3.27\cdot 10^{-3} J

The final energy stored in the capacitor, after the dielectric is inserted, is

U'=11.60\cdot 10^{-3} J

Therefore, the change in energy of the capacitor during the insertion is:

\Delta U=11.60\cdot 10^{-3}-3.27\cdot 10^{-3}=8.33\cdot 10^{-3} J

So, the energy of the capacitor has increased by 8.33\cdot 10^{-3} J

8 0
3 years ago
Dibuja la gráfica de calentamiento de un kilogramo de plomo que se encuentra inicialmente a 70ºC y pasa a una temperatura final
MariettaO [177]

Answer:

Q= m c_e ΔT and   Q = m L

Explanation:

For this graph of temperature vs energy (heating) we must use two relations

* for when there is no change of state

          Q= m c_e ΔT

* for using there is change of state

          Q = m L

the second expression is a consequence of the fact that all the energy supplied is used to change the state of the solid-liquid and liquid-gas system

the energy supplied is the sum of the energy in each interval

divide the system into intervals determined by the state change points

1) from T₀ = 70ºC to T_f = 327.4ºC, sample in solid-liquid state

           c_e = 128 J / kg ºC

           Q₁ = m c_e (T_f -To)

           Q₁=1  128 (327.4 -70)

           Q₁ = 3.29 10⁴ J

           Q = Q₁ = 3.29 10⁴ J

2) when is it changing from solid to liquid

            L = 2.45 10⁴ J / kg

            Q2 = 1 2.45 10⁴

            Q2 = 2.45 10⁴ J

            Q = Q₁ + Q₂

             Q = 5.74 10⁴ J

3) from to = 327.4ºC until T_f = 1725ºC, sample in liquid state

in the tables the specific heat of the solid and liquid state is the same

             Q3 = m c_e (T_f -To)

             Q3 = 1 128 (1725 -327.4)

             Q3 = 1.79 10⁵ J

              Q = Q₁ + Q₂ + Q₃

              Q = (3.29 +2.45 + 17.9) 10⁴ J

              Q = 23.64 10⁴ J

4) for when it is changing from the liquid state to the gaseous state

             L_v = 8.70 10⁵ J / kg

             Q₄ = m L_v

             Q₄ = 1 8.70 10⁵

             Q₄ = 8.70 10⁵ J

             Q = Q₁ + Q₂ + Q₃ + Q₄

              Q = (3.29 +5.74 + 17.9+ 87.0) 10⁴ J

               Q = 110.64 10⁴ J

5) from To = 1725ºC to T_f = 2000ºC, sample in gaseous state

             Q₅ = m c_e ΔT

             Q₅ = 1 128 (2000 -1725)

             Q₅ = 3.52 10⁴ J

             Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

              Q = 114.16 104 J

the following table shows the points to be plotted

         Energy (10⁴ J)  Temperature (ºC)

                  0                     70

                 3.29             327.4

                 5.74             327.4

               23.64           1725

               110.64          1725

                114.16         2000

In the attachment we can see a graph of Temperature versus energy supplied

8 0
3 years ago
Other questions:
  • My older son Ben is quite a good juggler. He got in some trouble once when he left a set of clear acrylic juggling balls, like t
    6·1 answer
  • A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
    11·1 answer
  • A boy pushes a box with a horizontal force across a rough surface. He then changes the direction of his force to be diagonal int
    5·1 answer
  • A system absorbed 44 joules of heat from its surroundings. After doing work, the increase in the internal energy of the system i
    12·2 answers
  • If an automobile engine delivers a power of 50.0 hp, how much time will it take for the engine to do 6.40 x 10^4 j of work? (1 h
    15·1 answer
  • A scientist heats up a container full of neon gas. What will most likely happen to the container as the gas heats up?
    13·1 answer
  • A battery with an emf of 12 V and an internal resistance of 1 Ω is used to charge a battery with an emfof 10 V and an internal r
    10·1 answer
  • What force is needed to accelerate a child on a sled at 1.25 m/s² is the total mass of the child and sled is 60 kg?
    11·1 answer
  • As amplitude of a wave increases, the
    6·1 answer
  • One object has a mass of 1 kg and another object has a mass of 3 kg. If the speeds are the same, which of the following is true
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!