The distance of the Image will be -33.75 cm
A concave mirror has an inward-curving reflecting surface that faces away from the light source. Unlike convex mirrors, a concave mirror's image forms a variety of images based on the object's proximity to the mirror.
Given that, an object placed 27 cm from a concave mirror having the focal length of 15 cm
We have to find distance of the Image
Using Mirror Formula:
1/f = 1/v + 1/u
Where,
f = focal length
v = Image distance from the mirror
u = object distance from the mirror (concave)
Substitute the known values in the above formula to find the value of 'v' i.e. from the mirror.
1/(-15) = 1/v + 1/(-27)
1/(-15) = 1/v - (1/27)
1/v = -0.029
v = -33.75 cm
Therefore the distance of the Image will be -33.75 cm
Learn more about concave mirror here:
brainly.com/question/9816370
#SPJ10
Answer:
1.Radio waves from using your TV.
2. microwaves you are in satellites.
3.UV light waves come from sunlight
4.x ray waves used at the doctors office
5. infrared waves are in remote controls when sending signals.
I don't know if I can think of another 5 right now. but I hope this helps.
Answer:
(C)Direct kick
Explanation:
In a game of soccer (foot-ball) there are lots of rules involved in the game and there is penalty for each of the rules violated. Some of the rules include penalty kick, free kick, throw in, goal kick etc.
Free kick is of two types; direct kick and indirect kick.
Direct kick is awarded when a player outside 18 yards box violently or dangerously charges a opponent.
Indirect kick can be awarded when a goalkeeper inside 18 yards box commits certain offenses.
Therefore, the correction option is (C)Direct kick
F = ma
We have mass = 20kg
And we need to solve for acceleration
So acceleration is change in velocity over time, in this case we have one velocity and we can assume the man started from rest so
12.3 / 0.9 = a
a = 13.6667
Now we can plug that into F = ma
F = (20)(13.6667)
F = 273.334
Rounding
F = 273.33
Now he is traveling east so we need a force towards the rest, or in the opposite direction to stop his motion.
If we assume east is the positive direction then we need a force of
-273.33 N to stop the man or 273.33 towards the west.
Answer:
- Amplitude = 5 cm (Heights)
- Wavelength (λ) = 40 cm
-
Wave speed (v) = 12 m/s (Approx)
- Time period (T) = 0.033 s (Approx)
- Maximum particle speed (V) = 9.43 m/s
Explanation:
1) Amplitude
Amplitude = 5 cm (Heights)
2) Wavelength (λ)
Wavelength (λ) = 40 cm
3) Wave speed
Wave speed (v) = √ t / μ
Wave speed (v) = √ 3.6 / [25x10⁻³]
Wave speed (v) = 12 m/s (Approx)
4) Time period (T)
Time period (T) = 1/f = (λ)/v
Time period (T) = 0.40m / 12
Time period (T) = 0.033 s (Approx)
5) Maximum particle speed (V)
Maximum particle speed (V) = Aw
Maximum particle speed (V) = [0.05x2x3.14] / 0.033
Maximum particle speed (V) = 9.43 m/s