Answer:
4. The reaction is spontaneous at any temperatures if the standard entropy of reaction is positive.
Explanation:
Equilibrium constant decreases on increasing the temperature . So the reaction appears to be exothermic . In other words
ΔH is negative .
Δ G = ΔH - TΔS
If ΔS is positive , second term is negative . ΔH is negative so the RHS of the equation is negative at all temperatures . Hence Δ G of the reaction is negative . So reaction is spontaneous at any temperature.
What are the elements so i can help?????
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
Answer:
C + 2H2 ⇒ CH4
Explanation:
In order to balance a chemical equation you need to make sure that the number of atoms on both sides are equal
C + H2 = CH4
C = 1
H = 2
Products:
C = 1
H = 4
H2 = 2 × 2 = 4
C + 2H2 ⇒ CH4
Hope this helps.