Answer:
3.4 × 10
^−
4
Explanation:
Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the
10
. If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
Answer:
Ionic bonds hold charged particles in solid NaCl together, such that they are unable to move or conduct electricity.
Explanation:
Consider an electric current that flows through a conductor: charge moves in a uniform direction from one end of the conductor towards the other.
Thus, there are two conditions for a substance to conduct electricity:
- The substance shall contain charged particles, and
- These charged particles shall be free to move across the substance.
A conductor of electricity shall meet both requirements.
Now, consider the structure of solid NaCl . NaCl is an ionic compound. It contains an ocean of oppositely charged ions:
- Positive ions, and
- Negative ions.
Ions carry charge. Thus, solid NaCl contains charged particles and satisfies the first condition.
Inside solid NaCl , electrostatic attractions ("ionic bonds") between the oppositely charged ions hold these ions in rigid ionic lattices. These ions are unable to move relative to each other. As a result, they cannot flow through the solid to conduct electricity. Under solid state, NaCl is unable to satisfy the second condition.
As a side note, melting NaCl into a liquid breaks the ionic bonds and free the ions from the lattice. Liquid NaCl is a conductor of electricity.
Answer: 6 atoms in total
Explanation:
It has one sodium atom, one hydrogen atom, one carbon atom, and three oxygen atoms.
The formula mass of a molecule is the sum of the atomic weights of the atoms in the empirical formula of the compound. It is also known as Formula Weight.
The atomic weights of
N = 14.01 amu
H = 1.00 amu
P = 30.97 amu
O = 16.0 amu
Now, we will calculate now the formula mass of a given substance
3(14.01) + 12(1.00) + 1(30.97) + 4(16.0) = 42.03 + 12.00 + 30.97 + 64.0 = 149.0 amu
Therefore, the formula mass for (NH4)3PO4 is 149.0 amu
Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water