Density is found by dividing mass over volume:
d=M/V. In this problem, we know the density, and the mass. Solve the general equation for volume, then enter the values from the problem and evaluate:
d=m/v [multiply v to both sides, then divide d from both sides]
v=m/d
v=83.8g/(2.33g/cm³)
v=35.965 cm³
v=36.0 cm³ to three significant figures (since your given information only has 3 sig figs)
To determine the number of moles of a gas, we need to have an expression that relates the pressure, temperature and volume of the system. For simplification, we assume that this gas is ideal so we use the equation PV=nRT. We calculate as follows:
PV=nRT
n = PV / RT
n = 235000(1.48x10^-4) / (8.314)(40+273.15)
n = 0.01336 mol
109/8.56=12.7
50+12.7
V=62.7
Mass= Volume x Density so i divided the mass and density to get the volume. and afterwards i would just add it to the mass to get my final answer
Answer:
ΔE = 5.02 x 10⁻¹⁹ j
Explanation:
ΔE (photon) = h·f = (6.63 x 10⁻³⁴ j·s)(7.57 x 10¹⁴ s⁻¹) = 5.02 x 10⁻¹⁹ j
h = Planck's Constant = 6.63 x 10⁻³⁴ j·s
f = frequency (given) = 7.57 x 10¹⁴ s⁻¹