Firstly, a balanced equation has to be written for the production of ammonia (NH₃) from hydrogen gas (H₂) and nitrogen gas (N₂):
N₂ + 3H₂ → 2NH₃
Now, the mole ratio of N₂ : NH₃ is 1 : 2 based on the coefficients of the balanced equation.
If the moles of N₂ = 2.5 moles
then the moles of NH₃ produced = 2.5 mol × 2
= 5 mol
Thus, the moles of ammonia produced when 2.5 mol of nitrogen gas is combined with excess hydrogen gas is 5 mol.
Answer:
178.55
Explanation:
176
×
0.05+
177
×
0.19
+
178
×
0.27
+
179
×
0.14
+
180
×
0.35
=
178.55
Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.
Explanation:
The reaction equation will be as follows.

Hence, the expression for
is as follows.
![K_{a} = \frac{[H_{2}SO^{-}_{4}][H^{+}]}{[H_{3}AsO_{4}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH_%7B2%7DSO%5E%7B-%7D_%7B4%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BH_%7B3%7DAsO_%7B4%7D%5D%7D)
Let us assume that the concentration of both
and
is x.

x = 0.01118034
This means that the concentration of
is 0.01118034.
Since, we know that the relation between pH and concentration of hydrogen ions is as follows.
pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
= 
= 1.958
Thus, we can conclude that the pH of a 0.500 M solution of arsenic acid is 1.958.