Since the reaction shown in the question is an acid - base reaction in the Lewis sense; the Lewis acid here is AlCl3 while the Lewis base here is Cl^- .
<h3>What is a Lewis acid?</h3>
A Lewis acid is a substance that accepts electron pair while a Lewis base donates an electron pair.
Now consider the given reaction; AlCl3 +Cl^- ------> AlCl 4 ^-. The Lewis acid here is AlCl3 while the Lewis base here is Cl^- .
Learn more about acid - base reaction: brainly.com/question/14356798
Answer:
58.443 g/mol
Explanation:
The molar mass of NaCl is the sum of the molar masses of the individual atoms:
Na: 22.989770 g/mol
Cl: 35.453 g/mol
The total molar mass is ...
NaCl: 58.443 g/mol
__
The molar mass does not depend on whether the material is in solution or in any other form.
Magnesium chloride is the name for the chemical compounds with the formulas MgCl2 and its various hydrates MgCl2(H2O<span>)x. These salts are typical ionic halides, being highly soluble in water. The hydrated magnesium chloride can be extracted from brine or sea water.</span>
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!
This is true. Water is the solvent in aqueous solutions