Answer:
C
Explanation:
The presence of mobile electrons explains the reason why there is conduction of electricity in the solid state. Electrons are the part of atoms that are majorly responsible for the different characteristics that substances exhibit.
A good example of the conduction of electricity can be seen in the case of 2 crystalline forms of carbon. While one of the allotropes could conduct electricity, the other allotrope cannot conduct electricity.
The two allotropes we are talking about here is graphite and diamond. While graphite could be used in a whole lot of electrolysis set up as an electrode, diamond does not found use in cases like this despite its crystalline structure. The reason for this is simple.
While diamond does not contain free mobile electron in its molecule, these free mobile electrons are present in a molecule of graphite. These free mobile electrons are the main reason why graphite can conduct electricity and diamond cannot even though they are both crystalline forms of carbon.
The equation for density id D=M/V, which is density is equal to mass over volume. The mass (46.8 g) divided by the volume (6 cm^3), is the density. I calculated it to be 7.8 g/cm^3
The density of a solid object that has a mass of 1.62 lb and a volume of 190 mL is 3.87g/mL.
<h3>How to calculate density?</h3>
Density is the measure of the mass of matter contained by a unit volume. It can be calculated by dividing the mass of the substance by its volume.
According to this question, a solid object is said to have a mass of 1.62 lb and a volume of 190 mL.
1 pound = 453.592 grams
1.62 Ibs is equivalent to 734.82 grams
Density of the solid object = 734.82 grams ÷ 190 mL
Density = 3.87g/mL
Therefore, the density of a solid object that has a mass of 1.62 lb and a volume of 190 mL is 3.87g/mL.
Learn more density at: brainly.com/question/20337365
#SPJ1
To solve this kinematics formula use the following equation:
Vf = Vi + at
Vf = 0 + (9.81 m/s^2)(3 seconds)
Vf = 29.43 m/s and or about 29.4 m/s of reported to 3 significant figures.
I don’t know let me go call and ask NASA real quick hold up