You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
Answer:
a) 
b) 
Explanation:
Part a
For this case we can begin finding the period like this:

Then we know that the centripetal acceleration is given by:

And the velocity is given by:

If we replace this into the acceleration we got:

And we can replace the values and we got:

Part b
For this case we want to find a value of k such that:

Where a = 9.74, so then we can solve for k like this:

Answer:
50 N
Explanation:
Let the natural length of the spring = L
so
100 = k(40 - L) (1)
200 = k(60 - L) (2)
(2)/(1): 2 = (60 - L)/(40 - L)
60 - L = 2(40 - L)
60 - L = 80 - 2L
2L - L = 80 - 60
L = 20
Sub it into (1):
100 = k(40 - 20) = 20k
k = 100/20 = 5 N/in
Now
X = k(30 - L) = 5(30 - 20) = 50 N
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²