1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
14

What is the current I(3τ), that is, the current after three time constants have passed? The current in the circuit will approach

a constant value Ic after a long time (as t tends to infinity). What is Ic?

Physics
1 answer:
Olin [163]3 years ago
5 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

I(\tau)=0.051 A

b

I(3 \tau)=0.076 A

c

I_c= 0.08 A

Explanation:

From the question we are told that

                I(t) = \frac{e}{R}(1-e^{\frac{t}{\tau} }) ; \ Where \ \tau = L/R

From the question we are told to find I(\tau) when t=0  equals the time constant (\tau)

That is to obtain I(\tau).This  is mathematically represented as

                   I(\tau = t)  = \frac{\epsilon}{R} (1- e^{-\frac{\tau}{\tau} })

             Substituting 12 V for \epsilon and 150Ω for R

                     I(\tau) = \frac{12}{150} (1- e^{-1})

                            =0.051 A

From the question we are told to find I(3 \tau) when t=0  equals the 3 times the  time constant (\tau)

That is to obtain I(3\tau).This  is mathematically represented as

                 I(\tau = t)  = \frac{\epsilon}{R} (1- e^{-\frac{3\tau}{\tau} })

                  I(\tau) = \frac{12}{150} (1- e^{-3})

                        =0.076 A

As tends to infinity \frac{\infty}{\tau}  = \infty

So I_c would be mathematically evaluated as

               I_c=I(\infty) = \frac{12}{150} (1- e^{- \infty})

                   = \frac{12}{150}

                   = 0.08 A

You might be interested in
What is the value of the equivalent resistance for the three resistors connected in series?
Harman [31]

The value of the equivalent resistance for the three resistors connected in series will be the sum of the three values.

To find the answer, we have to know more about the equivalent resistance.

<h3>What is meant by equivalent resistance?</h3>
  • equivalent resistance is the total value of the resistance connected in a circuit.
  • If n resistors are connected in series, then the equivalent resistance will be,

                R_E=R_1+R_2+..........+R_n

  • In our question we have three resistors. Thus, the equivalent resistance will be,

               R_E=R_1+R_2+R_3

Thus, we can conclude that, the value of the equivalent resistance for the three resistors connected in series will be the sum of the three values.

Learn more about the equivalent resistance here:

brainly.com/question/11603204

#SPJ4

7 0
1 year ago
A sound source is moving at 80 m/s toward a stationary listener that is standing in still air (a) Find the wavelength of the sou
Setler [38]

Answer:

a. wavelength of the sound, \vartheta = 1.315\vartheta_{o}

b. observed frequecy, \lambda = 0.7604\lambda_{o}

Given:

speed of sound source, v_{s} = 80 m/s

speed of sound in air or vacuum, v_{a} = 343 m/s

speed of sound observed, v_{o} = 0 m/s

Solution:

From the relation:

v = \vartheta \lambda        (1)

where

v = velocity of sound

\vartheta = observed frequency of sound

\lambda = wavelength

(a) The wavelength of the sound between source and the listener is given by:

\lambda = \frac{v_{a}}{\vartheta }         (2)

(b) The observed frequency is given by:

\vartheta = \frac{v_{a}}{v_{a} - v_{s}}\vartheta_{o}

\vartheta = \frac{334}{334 - 80}\vartheta_{o}

\vartheta = 1.315\vartheta_{o}                (3)

Using eqn (2) and (3):

\lambda = \frac{334}{1.315} = \frac{1}{1.315}\frac{v_{a}}{\vartheta_{o}}

\lambda = 0.7604\lambda_{o}

4 0
3 years ago
A 50.0 N box sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at on
Vikki [24]

Answer:

-4.0 N

Explanation:

Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):

F_f = ma (1)

We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

m=\frac{W}{g}=\frac{50.0 N}{9.8 m/s^2}=5.1 kg

And we can fidn the acceleration by using the formula:

a=\frac{v-u}{t}

where

v = 0 is the final velocity

u = 1.75 m/s is the initial velocity

t = 2.25 s is the time the box needs to stop

Substituting, we find

a=\frac{0-1.75 m/s}{2.25 s}=-0.78 m/s^2

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)

Therefore, substituting into eq.(1) we find the force of friction:

F_f = (5.1 kg)(-0.78 m/s^2)=-4.0 N

Where the negative sign means the direction of the force is opposite to the motion of the box.

6 0
3 years ago
Suppose a sound wave and an electromagnetic wave have the same frequency. Which has the longer wavelength? 1. the electromagneti
Mashcka [7]

Answer:

1. the electromagnetic wave.

Explanation:

Mathematically,

wavelength = velocity ÷ frequency

A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.

Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.

Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)  

Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.

7 0
3 years ago
When an object travels a large distance in a small amount of time, the object's speed is
Kisachek [45]
If I were to go from the United States to China in one second, that's a large distance in an incredibly short time. I'd say that's pretty fast.

If I were to go from my room to the door of my room in a year, then that would be unbearably slow.
8 0
3 years ago
Other questions:
  • To achieve a speed of 2 m/s, the bottle must be dropped at m. To achieve a speed of 3 m/s, the bottle must be dropped at m. To a
    15·2 answers
  • Please help asap I need this rn
    10·1 answer
  • At what distance is the electrostatic force between two protons equal to the weight of one proton?
    10·1 answer
  • Earthquakes along the subduction zones near Sumatra and Chile are some of the strongest in
    15·1 answer
  • Suppose an astrophotographer hands you a picture with star trails taken looking toward the north celestial pole. If the star tra
    11·1 answer
  • D=1/2at^2 <br> solve for a
    14·1 answer
  • 5. A car has a kinetic energy of 4.32x105 J when traveling at a speed of 23 m/s. What is
    14·1 answer
  • A box is pushed horizontally with constant speed across a rough horizontal surface.
    8·1 answer
  • Evelynn is measuring the pitch of a piano note. What unit of measurement is she most likely recording her value in? hertz decibe
    11·2 answers
  • I'd like some help in these two questions please, thankyou so much. have a great day! stay safe and stay happy. (there are two p
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!