Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
Answer:
D = -4/7 = - 0.57
C = 17/7 = 2.43
Explanation:
We have the following two equations:

First, we isolate C from equation (2):

using this value of C from equation (3) in equation (1):

<u>D = - 0.57</u>
Put this value in equation (3), we get:

<u>C = 2.43</u>
Answer:
The force is 
Explanation:
Given that,
Mass of car = 64 kg
Suppose, a 1400-kg car that stops from 34 km/h on a distance of 1.7 cm.
We need to calculate the acceleration
Using formula of acceleration

Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value into the formula



We need to calculate the force
Using formula of force



Negative sign shows the direction of the force is in the direction opposite to the initial velocity.
Hence, The force is 
In your question where as a golf ball is struck at a ground level and the speed of the ball as a function of time is in the figure where time t=0 and va = 16m/s and vb=32m/s. The following is the answer:
a) How far does the golf ball travel horizontally before returning to ground level?
-<span>80m</span>
<span>(b) What is the maximum height above ground level attained by the ball?
</span>-39.87m
Answer:
Pi(3.14) radians or 180º degrees
Explanation:
First of all, we need to obtain the wavelength of a wave traveling to the speed of sound and 420 Hz of frequency.
The formula is:

where l = wavelength in meters
With current values:
l = 336 [m/s]/420[1/s] = 0.8 meters
Since a complete cycle (360º or 2pi radians) needs 0.8 meters to complete, 0.4 meters or 40 cm is just half of it, making a 180º degree phase or 3.14 radians.