Answer:
m = 0.59 kg.
Explanation:
First, we need to find the relation between the frequency and mass on a spring.
The Hooke's law states that

And Newton's Second Law also states that

Combining two equations yields

The term that determines the proportionality between acceleration and position is defined as angular frequency, ω.

And given that ω = 2πf
the relation between frequency and mass becomes
.
Let's apply this to the variables in the question.

Answer:
Force(f)= mass x acceleration
Acceleration (a) is the rate of change in velocity.
F=4N
M=0.2kg
a=F/M
a=4/0.2
a=20m/s^2
Explanation:
It means that the car has covered
(35 miles) x (the number of hours since it started traveling).
At some points during that time, the car was most likely moving
faster or slower than 35 miles per hour. We don't know. We only
know that it covered (35 miles) x (the number of hours since it left).
Answer:
I'm pretty sure this is not a complete question. My guess is that you are trying to add/subtract vectors. Vectors have both magnitude and direction, so vector A is pretty clear, but a magnitude of 13 (i'm guessing a resultant) without a direction is weird.
IF 13 is the magnitude of the resultant, vector B added to vector A could have any magnitude 17 ≤ B ≤ 43
It could have any direction of
θ = (225 - 180) ± arcsin(13/30)
θ = 45 ± 25.679...
70.679 ≤ θ ≤ 19.321
components of vector B would be
Bx = |B|cosθ
By = |B|sinθ
Answer:
For H2O, there is one atom of oxygen and two atoms of hydrogen. A molecule can be made of only one type of atom. In its stable molecular form, oxygen exists as two atoms and is written O2. to distinguish it from an atom of oxygen O, or ozone, a molecule of three oxygen atoms, O3.
Explanation: