Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
The reaction between calcium carbonate and hydrochloric acid can be expressed through the chemical reaction,
CaCO3 + 2HCl --> CaCl2 + H2O + CO2
The molecular weight of calcium carbonate is 100 g/mol while that of hydrochloric acid is 36.45. The equation above depicts that 100 g of calcium carbonate can be dissolved in 72.9 g of hydrochloric acid.
x = (4 g HCl)(100 g CaCO3 / 72.9 HCl)
x = 5.49 g
Answer: 5.49 g
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133