Answer:
See explanation below
Explanation:
In this case, we have the equilibrium reaction which is:
H₂ + I₂ <------> 2HI Kp = 54
Now, we have the partial pressures of each element in equilibrium, therefore, we can use the expression of equilibrium in this case to calculate the remaining pressure:
Kp = PpHI² / PpH₂ * PpI₂
Solving for the partial pressure of iodine:
PpI₂ = PpHI² / PpH₂ * Kp
Replacing the given values, we have:
PpI₂ = (2.1)² / 0.933 * 54
PpI₂ = 4.41 / 50.382
PpI₂ = 0.088 atm
Answer:
Covalent compounds have low forces of attraction between their molecules (i.e. one H2O molecule isn't as attracted to another H2O molecule than the oppositely charges ions are in an ionic compound). Little energy is needed to break their bonds, therefore they have low meting points. Hope this is what you are looking for!
Explanation:
Brainliest please?
due to there reactive rate?
Answer:
0.9 mole of Fe(OH)3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Fe(NO3)3 + 3NaOH —> Fe(OH)3 + 3NaNO3
Now, we can determine the moles of iron (III) hydroxide formed from the reaction as follow:
From the balanced equation above,
3 moles of NaOH reacted to produce 1 mole of Fe(OH)3.
Therefore, 2.7 moles of NaOH will react to produce = 2.7/3 = 0.9 mole of Fe(OH)3.
Therefore, 0.9 mole of Fe(OH)3 is produced from the reaction.