Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.
Answer:
Two stroke cycle Four stroke cycle
1.Have on power stroke in one revolution. 1.have one power
stroke in two revolution
2.Complete the cycle in 2 stroke 2.Complete the cycle in 4 stroke
3.It have ports 3.It have vales
4.Greater requirement of cooling 4.Lesser requirement of cooling
5.Less thermal efficiency 5.High thermal efficiency
6.Less volumetric efficiency 6.High volumetric efficiency
7.Size of flywheel is less. 7.Size of flywheel is more.
Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.
Answer:
Time =t2=58.4 h
Explanation:
Since temperature is the same hence using condition
x^2/Dt=constant
where t is the time as temperature so D also remains constant
hence
x^2/t=constant
2.3^2/11=5.3^2/t2
time=t^2=58.4 h
Answer:
R = ![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Explanation:
The mappings always involve a translation and a rotation of the matrix. Therefore, the rotation matrix will be given by:
Let
and
be the the angles 60⁰ and 30⁰ respectively
that is
= 60⁰ and
= 30⁰
The matrix is given by the following expression:
![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
The angles can be evaluated and left in the surd form.