1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
2 years ago
11

What is an advantage of a nuclear-fission reactor?.

Engineering
1 answer:
Kobotan [32]2 years ago
4 0

Answer:

Nuclear fission is almost 8,000 times more efficient than traditional fossil fuels at producing energy. That's a lot of energy packed into a small space. Nuclear energy is more efficient, which means it uses less fuel to power the plant and produces less waste.


advantages:
-produces no polluting gases
-does not contribute to global warming
-very low fuel costs
-Low fuel quantity reduces mining and transportation effects on environment
-High technology research required benefits other industries
-Power station has very long lifetime

Disadvantages:
-Waste is radioactive and safe disposal is very difficult and expensive
-Local thermal pollution from wastewater affects marine life
-Large-scale accidents can be catastrophic
-Public perception of nuclear power is negative
-Costs of building and safely decommissioning are very high
-Cannot react quickly to changes in electricity demand

You might be interested in
Calculate the differential pressure in kPa across the hatch of a submarine 320m below the surface of the sea. Assume the atmosph
kicyunya [14]

Answer:

The pressure difference across hatch of the submarine is 3217.68 kpa.

Explanation:

Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.  

Given:

Height of the hatch is 320 m

Surface gravity of the sea water is 1.025.

Density of water 1000 kg/m³.

Calculation:

Step1

Density of sea water is calculated as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

Here, density of sea water is\rho_{sw}, surface gravity is S.G and density of water is \rho_{w}.

Substitute all the values in the above equation as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

1.025=\frac{\rho_{sw}}{1000}

\rho_{sw}=1025 kg/m³.

Step2

Difference in pressure is calculated as follows:

\bigtriangleup p=rho_{sw}gh

\bigtriangleup p=1025\times9.81\times320

\bigtriangleup p=3217680 pa.

Or

\bigtriangleup p=(3217680pa)(\frac{1kpa}{100pa})

\bigtriangleup p=3217.68 kpa.

Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.

6 0
3 years ago
Water is stored in a tank which has vent open to the atmosphere. The water level is 1.0 m below the top the tank and the water i
sp2606 [1]

Answer:

6.99 x 10⁻³ m³ / s

Explanation:

Th e pressure difference at the two ends of the delivery pipe due to atmospheric pressure and water column will cause flow of water.

h = difference in the height of water column at two ends of delivery pipe

6 - 1 =  5 m

Velocity of flow of water

v = √2gh

= √ (2 x 9.8 x 5)

=  9.9 m /s

Volume of water flowing per unit time

velocity x cross sectional area

= 9.9 x 3.14 x .015²

= 6.99 x 10⁻³ m³ / s

7 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
While discussing VIN numbers, Technician A says that the first digit of the VIN identifies the country where the vehicle was man
ruslelena [56]
Usually the first digit of the vin id’s the country it was built. So technician A would be correct. That’s usually how it is. Hope this helps. Please let me know if this is incorrect
4 0
3 years ago
How to draw the output voltage waveform rectifier
tatyana61 [14]

Answer:

Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.

AC Signal = An electrical signal that alternates between positive and negative voltage.

DC Signal = An electrical signal that only has positive voltage.

Rectify = A fancy word for converting something.

Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.

The load resistor is just there to prevent a short circuit from happening.

7 0
3 years ago
Other questions:
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • Classify the terms as related to a thermal system or mechanical system.
    8·1 answer
  • A Toyota Camry of mass 1650 kg turns from Chaplin Road to Route 79, thereby accelerating from 35 MPH in the city till 70 MPH on
    6·1 answer
  • Which one of the following activities is not exempt from licensure pursuant to Chapter 471, F.S.? A person practicing engineerin
    5·1 answer
  • In order to be a Mechanical Engineer, you need to:
    5·2 answers
  • Answer the following questions about your own experience in the labor force.
    15·1 answer
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
  • Write a paragraph on computer 473
    5·1 answer
  • A company intends to market a new product and it estimates that there is a 20% chance that it will be first in the market
    7·1 answer
  • Describe the risks associated with their working environment (such as the tools, materials and equipment that they use, spillage
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!