1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
14

List the four processes in the Otto cycle.

Engineering
1 answer:
OleMash [197]3 years ago
7 0

Answer:

Explanation:

A woman walks due west on the deck of a ship at 3 miyh.The ship is moving north at a speed of 22 miyh.Find the speed and direction of the woman relative to the surface of the water.

You might be interested in
Radioactive wastes generating heat at a rate of 3 x 106 W/m3 are contained in a spherical shell of inner radius 0.25 m and outsi
MariettaO [177]

Answer:

Inner surface temperature= 783K.

Outer surface temperature= 873K

Explanation:

Parameters:

Heat,e= 3×10^6 W/m^3

Inner radius = 0.25 m

Outside radius= 0.30 m

Temperature at infinity, T(¶)= 10°c = 273. + 10 = 283K.

Convection coefficient,h = 500 W/m^2 . K

Temperature of the surface= T(s) = ?

Temperature of the inner= T(I) =?

STEP 1: Calculate for heat flux at the outer sphere.

q= r × e/3

This equation satisfy energy balance.

q= 1/3 ×3000000(W/m^3) × 0.30 m

= 3× 10^5 W/m^2.

STEP 2: calculus the temperature for the surface.

T(s) = T(¶) + q/h

T(s) = 283 + 300000( W/m^2)/500(W/m^2.K)

T(s) = 283+600

T(s)= 873K.

TEMPERATURE FOR THE OUTER SURFACE is 873 kelvin.

The same TWO STEPS are use for the calculation of inner temperature, T(I).

STEP 1: calculate for the heat flux.

q= r × e/3

q= 1/3 × 3000000(W/m^3) × 0.25 m

q= 250,000 W/m^2

STEP 2:

calculate the inner temperature

T(I) = T(¶) + q/h

T(I) = 283K + 250,000(W/m^2)/500(W/m^2)

T(I) = 283K + 500

T(I) = 783K

INNER TEMPERATURE IS 783 KELVIN

5 0
2 years ago
A two-dimensional flow field described by
Oduvanchick [21]

Answer:

the answer is

Explanation:

<h2>  We now focus on purely two-dimensional flows, in which the velocity takes the form </h2><h2>u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) </h2><h2>With the velocity given by (2.1), the vorticity takes the form </h2><h2>ω = ∇ × u = </h2><h2> </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y </h2><h2>k. (2.2) </h2><h2>We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y = 0. (2.3) </h2><h2>We have already shown in Section 1 that this condition implies the existence of a velocity </h2><h2>potential φ such that u ≡ ∇φ, that is </h2><h2>u = </h2><h2>∂φ </h2><h2>∂x, v = </h2><h2>∂φ </h2><h2>∂y . (2.4) </h2><h2>We also recall the definition of φ as </h2><h2>φ(x, y, t) = φ0(t) + Z x </h2><h2>0 </h2><h2>u · dx = φ0(t) + Z x </h2><h2>0 </h2><h2>(u dx + v dy), (2.5) </h2><h2>where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent </h2><h2>of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is </h2><h2>even easier to establish when we restrict our attention to two dimensions. If we consider </h2><h2>two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, </h2><h2>Green’s Theorem implies that   </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2></h2><h2></h2>
5 0
3 years ago
The one end of a hollow square bar whose side is (10+N/100) in with (1+N/100) in thickness is under a tensile stress 102,500 psi
netineya [11]

Answer:

The one end of a hollow square bar whose side is (10+N/100) in wit

Explanation:

3 0
3 years ago
Air enters a diffuser operating at steady state at 540°R, 15 lbf/in.2, with a velocity of 600 ft/s, and exits with a velocity of
yKpoI14uk [10]

Answer: Hello the question is incomplete below is the missing part

Question:  determine the temperature, in °R, at the exit

answer:

T2= 569.62°R

Explanation:

T1 = 540°R

V2 = 600 ft/s

V1 = 60 ft/s

h1 = 129.0613  ( value gotten from Ideal gas property-air table )

<em>first step : calculate the value of h2 using the equation below </em>

assuming no work is done ( potential energy is ignored )

h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778

∴ h2 = 136.17 Btu/Ibm

From Table A-17

we will apply interpolation

attached below is the remaining part of the solution

8 0
2 years ago
- You have a bin wrench turning a 1/2 13 UNC bolt. You overcome 1200 lbs of resistance when you
andrew11 [14]

Fr

is my guess but yeah

6 0
2 years ago
Other questions:
  • For a heat pump, COP&lt;1. a) True b) False
    11·1 answer
  • The arm of the robot is extending at a constant rate = 1.5 ft/s when r = 3 ft, z = (4t2) ft, and  = (1.5 t) rad, where t is in
    14·1 answer
  • The boy in the wagon begins throwing bricks out of the wagon to simulate rocket propulsion. The wagon begins at rest, and the bo
    12·1 answer
  • If you’re designing a new pair of shoes, what are some things you’ll have to think about ??
    6·2 answers
  • Which section of business plan should be the bulk of the plan
    7·1 answer
  • Thin film deposition is a process where: a)-elemental, alloy, or compound thin films are deposited onto a bulk substrate! b)-Pho
    12·1 answer
  • Which element refers to musically depicting the emotion in the words of a musical piece?
    14·1 answer
  • The section should span between 10.9 and 13.4 cm (4.30 and 5.30 inches) as measured from the end supports and should be able to
    5·1 answer
  • What is the answer of this question please tell me <br><br>dadada please please​
    10·1 answer
  • Please help me. I have no idea what I'm doing.​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!