Answer:
A)
It should be Non- toxic
It should possess high Thermal conductivity
It should have the Required Thermal diffusivity
B)
- stoneware : This material has good thermal diffusivity and it is quite affordable and it is used in making pizza stones
- porcelain: mostly used for mugs and it is non-toxic
- Pyrex : posses good thermal conductivity used in oven
C) All the materials are suitable because they serve different purposes when making modern kitchen cookware
Explanation:
A) characteristics required of a ceramic material to be used as a kitchen cookware
- It should be Non- toxic
- It should possess high Thermal conductivity
- It should have the Required Thermal diffusivity
B) comparison of three ceramic materials as to their relative properties
- stoneware : This material has good thermal diffusivity and it is quite affordable and it is used in making pizza stones
- porcelain: mostly used for mugs and it is non-toxic
- Pyrex : posses good thermal conductivity used in ovens
C) material most suitable for the cookware.
All the materials are suitable because they serve different purposes when making modern kitchen cookware
Answer:
u_e = 9.3 * 10^-8 J / m^3 ( 2 sig. fig)
Explanation:
Given:
- Electric Field strength near earth's surface E = 145 V / m
- permittivity of free space (electric constant) e_o = 8.854 *10^-12 s^4 A^2 / m^3 kg
Find:
- How much energy is stored per cubic meter in this field?
Solution:
- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:
u_e = 0.5*e_o * E^2
- Plug in the values given:
u_e = 0.5*8.854 *10^-12 *145^2
u_e = 9.30777 * 10^-8 J/m^3
Air supplied to a pneumatic system is supplied through the C. Actuator
Explanation
Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid. Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.
From the above statement it is clear that Air supplied to a pneumatic system is supplied through the Actuator
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution