Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
Answer:
hand tracing
Explanation:
as a programmer when we pretend computer in the debugging process by the step of each statement in recording
then there value of variable is hand tracing because as The hand tracking feature is the use of hands as an input method
so while recording value of each variable each step is hand tracing
Answer: Attached below is the missing diagram
answer :
A) 1) Wr > WI, 2) Qc' > Qc
B) 1) QH' > QH, 2) Qc' > Qc
Explanation:
л = w / QH = 1 - Qc / QH and QH = w + Qc
<u>A) each cycle receives same amount of energy by heat transfer</u>
<u>(</u> Given that ; Л1 = 1/3 ЛR )
<em>1) develops greater bet work </em>
WR develops greater work ( i.e. Wr > WI )
<em>2) discharges greater energy by heat transfer</em>
Qc' > Qc
solution attached below
<u>B) If Each cycle develops the same net work </u>
<em>1) Receives greater net energy by heat transfer from hot reservoir</em>
QH' > QH ( solution is attached below )
<em>2) discharges greater energy by heat transfer to the cold reservoir</em>
Qc' > Qc
solution attached below
Answer:
MOXIE is designed to generate up to 10 grams of oxygen per hour. This technology demonstration was designed to ensure the instrument survived the launch from Earth, a nearly seven-month journey through deep space, and touchdown with Perseverance on Feb
<h3><u>
Answer:</u></h3>
Over 8 straight days of playing
<h3><u>
Explanation:</u></h3>
200+ hours, if you're a game master