If the mass of the object and the volume of the object is determined;
Then, the density of the object is determined by taking the ratio of the mass and volume.
<h3>What is density of an object?</h3>
The density of an object is the ratio of the mass and volume of that object.
Mathematically;
To determine the density of an object therefore, the physical characteristics of mass and the volume of the object are measured.
The mass of the object is obtained using a scale or a balance.
The volume of the object if a solid is obtained using a displacement bottle. If it is a liquid, a measuring cylinder is used.
The density of the object is then obtained by taking the ratio of the mass and the volume of the object.
In conclusion, the density of an object is determined from the volume and mass ratio.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Player 2 because moment is mass times acceleration and since they are all going the same speed. Speed doesn't matter so the only thing that is left is mass/ weight and he has the most
Answer:
can detect axis of magnetic field
Explanation:
Answer:
1327 kg
Explanation:
So the net force exerted on the wagon would be the sum of forces from 2 horses subtracted by friction force

This force results in an acceleration of a = 1.3 m/s2. We can use Newton's 2nd law to calculate the mass of the wagon


Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>